ALMA TDA Project Meeting

1/2/2017
Outline

• Introductions and project overview
• Discussion of Radio Astronomy Data Analysis Challenges
  <Break>
• Technical Description of our work
  <Lunch>
• Live Demo using datasets provided
  <Break>
• Discussion
  • Improvements to software, additional features, etc.
  • Scientific challenges/opportunities using this approach
  • Spreading the word about the technique
  • Revisit data challenges facing Radio Astronomers
Personnel Status

• USF
  • Paul Rosen
  • Junyi Tu

• NRAO
  • Jeff Kern

• San Jose State
  • Betsy Mills

• Utah
  • Bei Wang
  • Chris Johnson
  • Ayla Khan
  • Dan White

• Collaborators
PROJECT OVERVIEW

Project history—ALMA Development Study

Project objectives—Investigate applications of Topological Data Analysis (TDA) to ALMA data
TOPOLOGICAL DATA ANALYSIS (TDA)

study of approaches to EXTRACT structure from NOISY or COMPLEX data and REPRESENT that data in an actionable form
TDA represents a DIVERSE toolbox capable of addressing analysis needs in many contexts

Our current work uses the CONTOUR TREE for data cube denoising
DISCUSSION OF RADIO ASTRONOMY DATA ANALYSIS CHALLENGES
TECHNICAL DESCRIPTION OF OUR WORK
**TOPOLOGICAL DATA ANALYSIS (TDA)**

study of approaches to EXTRACT structure from NOISY or COMPLEX data and REPRESENT that data in an actionable form
**PERSISTENT HOMOLOGY (PH)**

a method for computing topological FEATURES of a space at DIFFERENT spatial RESOLUTIONS simultaneously
**Usage Scenario**

- Topological Skeleton Construction
- Scalar Field Modification
- Tree Modification
Usage Scenario

Topological Skeleton Construction

Scalar Field Modification

Tree Modification
TOPOLOGICAL SKELETON CONSTRUCTION

THE CONTOUR TREE
CONTOUR TREES
CONTOUR TREES
CONTOUR TREES
CRITICAL POINT TYPES

local min

local max

saddle point
CONTOUR TREES
CONTOUR TREES
CONTOUR TREES
CONTOUR TREES
CONTOUR TREES
CONTOUR TREES
**Contour Trees**
A CLOSER LOOK AT THE CONTOUR TREE

Scalar Value of Event
A CLOSER LOOK AT THE CONTOUR TREE

Scalar Value of Event

Birth of the Feature
A CLOSER LOOK AT THE CONTOUR TREE

Scalar Value of Event

Death of the Feature

Birth of the Feature
A CLOSER LOOK AT THE CONTOUR TREE

Persistence of the Feature

Scalar Value of Event
Usage Scenario
CRITICAL POINT CANCELLATION
CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time

33
CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time
CONTROLLING SIMPLIFICATION

THE PERSISTENCE DIAGRAM

Feature Birth Time

Feature Death Time
CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Birth Time

Feature Death Time

36
CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM
CONTROLLING SIMPLIFICATION
THE PERSISTENCE DIAGRAM

Feature Death Time

Feature Birth Time
CONTROLLING SIMPLIFICATION

THE PERSISTENCE DIAGRAM

Feature Birth Time

Feature Death Time

PERSISTENCE!
CONTROLLING SIMPLIFICATION

THE PERSISTENCE DIAGRAM

Feature Birth Time

Feature Death Time
FEATURE REMOVAL
FEATURE REMOVAL
FEATURE REMOVAL
FEATURE REMOVAL
**Usage Scenario**

- Topological Skeleton Construction
- Scalar Field Modification
- Tree Modification
SCALAR FIELD MODIFICATION
ALTERNATIVE SIMPLIFICATIONS
ALTERNATIVE SIMPLIFICATIONS
ALTERNATIVE SIMPLIFICATIONS
ALTERNATIVE SIMPLIFICATIONS
EXAMPLE

Simple Spinning Disk
from Anil Seth
Phys. & Astro.
University of Utah
VARYING PERSISTENT SIMPLIFICATION
RUNNING THROUGH SLICES
LUNCH
Live Demo
DISCUSSION
TOPICS

Improvements to software, additional features, etc.
Scientific challenges/opportunities using this approach
Spreading the word about the technique
Revisit data challenges facing Radio Astronomers
Outstanding Issues

• Moment analysis (simplify before or after)
• Multiple slices (3D contour tree)
• Local vs global contour trees / Scalability
• Boundary
• Scalar field simplification
Outstanding issue: Moment analysis

\[ M_0 = PS \left( \sum V_{el_i} \right) \]

or

\[ M_0 = \sum PS(V_{el_i}) \]
Outstanding issue: multiple slices

- How to co-simplify?
- Multiple 2D vs 3D contour trees?
Outstanding issue: 3D contour trees (topological pants)

Both have the same isovalue
Outstanding issue: 3D contour trees (topological pants)

Both have the same isovalue
Outstanding issue: 3D contour trees (topological pants)
Outstanding issue: Local vs. global contour tree
Outstanding issue: Local vs. global contour tree

• 2 part question
  • Which makes sense for analysis?
  • Can we compute global?

• Research questions:
  • Precomputation?
  • Data storage and query?
  • Efficient computation in parallel?
Outstanding issue: Scalability

• We have a new parallel GPU implementation of the contour tree in the works (needs debugging)

• This will partially address issue from a technical standpoint
  • Implementation is limited in the size of field it can support (memory bound, not compute bound)
  • Complete solution will require slicing the field and gluing multiple trees

• Note: scalar field simplification on a large field will be costly and still needs a GPU implementation
Outstanding issues: Boundary Conditions
Outstanding issues: Scalar field simplification
Possible Implementation & Research Issues Moving Forward

• Contour tree parallelization, precomputation, storage, etc.
  • Integration of this data into fits file?
• Parallelization of scalar field simplification
• Investigate alternative scalar field simplification mechanisms
• Visualizations
  • Redesign of persistence diagram
  • Better handing of multiple cubes
  • Better handling of co-simplification interface
• Alternative topological structures (morse-smale complex, more precisely)
• Deeper dive into applications
  • Denoising / noise modeling
  • Source Finding (and prioritization)
  • Source Segmentation
• Scientific validation / verification
• Integration with CASA
• Community outreach
• Combining with other ML technologies (such as clustering or supervised learning)