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Abstract. Correlation is a powerful measure of relationships assisting
in estimating trends and making forecasts. It’s use is widespread, being
a critical data analysis component of fields including science, engineer-
ing, and business. Unfortunately, visualization methods used to identify
and estimate correlation are designed to be general, supporting many
visualization tasks. Due in large part to their generality, they do not
provide the most efficient interface, in terms of speed and accuracy for
correlation identifying. To address this shortcoming, we first propose a
new correlation task-specific visual design called Correlation Coordinate
Plots (CCPs). CCPs transform data into a powerful coordinate system
for estimating the direction and strength of correlation. To extend the
functionality of this approach to multiple attribute datasets, we pro-
pose two approaches. The first design is the Snowflake Visualization,
a focus+context layout for exploring all pairwise correlations. The sec-
ond design enhances the CCP by using principal component analysis to
project multiple attributes. We validate CCP by applying it to real-world
data sets and test its performance in correlation-specific tasks through
an extensive user study that showed improvement in both accuracy and
speed of correlation identification.

Keywords: Correlation identification · Correlation visualization ·
Multidimensional data visualization

1 Introduction

Correlation is a powerful metric that provides a predictive relationship between
variables used in science, engineering, and business [17,26,32]. A correlation
coefficient is a measure of the strength and direction of such a relationship.
While correlation is a powerful metric, visual examination is also critical. The
many-to-one relationship between data and a correlation coefficient may obscure
important features of the data. In Anscombe’s Quartet (see Fig. 1) [1], 4 distrib-
utions (i.e. the many relationship) have identical correlation coefficients (i.e. the
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Fig. 1. Anscombe’s Quartet [1] shows 4 distributions with an outlier, noise, non-
linearity, and non-relationship, respectively, that all have correlation coefficients of
0.816.

one relationship). Visual examination can disambiguate the variations to outliers
(case 1), noise (case 2), non-linearity (case 3), and non-relationship (case 4).

Both scatterplots (SCP) [20] and parallel coordinates plots (PCP) [19] are
capable of being used to investigate correlation. However, that does not mean
one should not infer that these are the optimal tools for performing such tasks. In
situations where correlation is the most important data feature, these encodings
are arguably non-optimal [12,22]. This challenge is exacerbated by the increas-
ing desire to analyze multi-attribute data. A number visualization techniques
exist for this analysis [2,4,29], with Scatterplot Matrices (SPLOMs) and PCPs
remaining the most popular. SPLOMs simultaneously show all possible combi-
nations of attribute, but the plots become small as the number of combinations
grows quadratically. For PCPs, the series of axes grow linearly, but the interface
relies heavily upon interaction.

The critical shortcoming to these methods is in their design goal—they are
designed as general-purpose tools for performing a wide variety of analytic tasks.
No special consideration has been made to any single task, meaning that while
they can be used to identify correlation, they are not designed for it.

With these limitations in mind, we have developed a new, correlation task-
specific visual design called Correlation Coordinate Plots, or CCPs (see Fig. 2(a–
c)). CCPs use design attributes, such as axis shape and a simple, yet effective,
point transform to enable quick and accurate determination of correlation direc-
tion and strength.

To support multi-attribute analysis we developed 2 different approaches. The
first is a focus+context style circular layout for CCPs, called the Snowflake
Visualization (see Fig. 2(d)). This visualization represents a compromise where
the screen space needed to represent additional attributes grows linearly in the
focus and quadratically in the context region. Interaction is still relied upon for
full investigation. In the second approach, we have extended the visual metaphors
of the CCP to support a single visual interface for multi-attribute analysis by
using principal component analysis (PCA) of the data.

To validate the efficacy of our new approaches, use case examples and a
user study are used. Our user study had novice and expert subjects perform
correlation-related tasks in SCP, PCP, and CCP environments. Our results con-
firmed that CCP methods outperform SCP and PCP in accuracy and timing.

In summary, the contributions of this paper are:
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(a) Positive (b) No Corr (c) Nega-
tive

(d) Snowflake Visualization

Fig. 2. Correlation Coordinate Plots (CCPs) transform data into a coordinate system
better suited to investigating correlation between attributes. (a–c): Example CCPs
show positive, no, and negative (or anti-) correlation, respectively. (d): Snowflake Visu-
alization is a focus+context interface that combines CCPs for 1 attribute to all others
in the middle (i.e. the focus) and CCPs for all other pairings on the perimeter (i.e. the
context).

– a task-specific visualization, the Correlation Coordinate Plot, designed to
efficiently identify correlations;

– a circular layout, the Snowflake Visualization, that provides an efficient
focus+content style visualization of all pairwise relationships in multi-
attribute data;

– a single plot visualization for exploring multi-attribute correlations using
PCA; and

– a use case analysis and user study confirming the superior performance of
CCP with correlation-related tasks when compared to SCP and PCP.

2 Related Work

2.1 Correlation

Correlation is a metric calculated on data that can be used to model and
predict relationships [17,32]. The “quality of relationship” is often measured
using a correlation coefficient [6,31], with positive correlation indicating 2
attributes are increasing together, while negative or anti-correlation indicates
that 1 attribute increases and the other decreases. There are several correlation
coefficient measures, the most common of which is the Pearson Correlation Coef-
ficient (PCC) [25,28]. PCC, ρ(x, y), measures the linear relationship between 2
attributes x and y with means x̄ and ȳ and standard deviations σx and σy. It is
defined as:

ρ(x, y) =
cov(x, y)

σxσy
=

Σ(xi − x̄)(yi − ȳ)
σxσy

. (1)
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As far as correlation in visualization is concerned, there are 2 schools of
thought. The first is to show metrics on data, not the data themselves. Exam-
ples include Corrgrams [10] and Scagnostics [7,30]. These approaches have the
advantages of visual scalability but the potential disadvantages demonstrated
by Anscombe’s Quartet [1]. An overview of the metrics used in these approaches
can be found in [3].

The alternative approach shows all data points. In this category, scatter-
plots and parallel coordinates have been shown most effective [12,22]. Since our
approach follows this paradigm, we compare against these techniques.

2.2 Scatterplot

A Scatterplot (SCP) [5,20] is a simple plot of points used to investigate the
relationships between 2 attributes [13]. The patterns of importance in this con-
text are when the data points slope from lower left to upper right, suggesting
positive correlation, and sloping from upper left to lower right suggests negative
correlation. The direction of correlation (positive or negative) can be confusing
to novice users. More importantly, the strength of correlation (high versus low)
can at times be difficult to interpret.

For multi-attribute data, a Scatterplot Matrix (SPLOM) [13,18] shows the
relationships of all pairs of attributes by organizing a grid of SCPs with each
attribute occupying 1 row and 1 column. As the number of attributes increases,
the number of plots grows quadratically making it difficult to present all of the
data. This problem can be mitigated by approaches such as Corrgrams [10],
which display a matrix of correlation glyphs. These glyphs scale well and give
the user quick access to summary statistics, but they may hide important data
features (e.g. Anscombe’s Quartet). In other cases, navigation can be used to
search larger spaces [8].

2.3 Parallel Coordinates Plot

Parallel Coordinates Plots (PCPs) [9,19] are another well-known visualization
technique for exploring multi-attribute datasets, which display n parallel axes, 1
for each attribute. Data points map to vertices on each parallel axis and connect
with line segments. For PCPs, in simple cases, the direction of correlation, though
not necessarily intuitive, is easy to identify. Positive correlation appears as a
series of parallel lines, while negative correlation appears as crossing lines.

In noisy cases, the ambiguity created by the crossing lines hides patterns but
retains outlier visibility [33,34]. This makes correlation direction and strength
difficult to interpret. Modifications to PCPs have been proposed by using color,
opacity, smooth curves, frequency, density or animation [11,15,16] to partially
address this. However, previous studies have shown that PCPs are slower and
less accurate than SCPs for correlation tasks [12,22,23].

The advantage of a PCP is that it provides a continuous and comparative
view across the axes, and the screen space needed for the visualization scales
linearly with the number of attributes. At the same time, PCPs do not show
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all possible combinations of attribute pairs, requiring significant user interaction
for exhaustive exploration. Using 3D parallel coordinates can enable exploration
of the many-to-one relationship [21] with the traditional downsides of 3D—
perspective effects and occlusion in large data. A PCP matrix [14] is another
method that may help overcome this limitation.

3 Correlation Coordinates Plot

The task generality (i.e. the support for many tasks) plays as both an advantage
and disadvantage for the SCP and PCP. Either method is capable of being used
for correlation tasks, but they are not necessarily the most efficient methods
available. This has led us to develop a new visual encoding focused specifically
on correlation tasks, called Correlation Coordinate Plots (CCPs). The proposed
method is centered on helping users quickly identify the existence, direction, and
strength of pairwise correlations. The visual design is motivated by our desire
to make the correlation task one of comparison using position along a common
baseline, a highly effective visual channel [24].

For clarity in notation, we assume a dataset X contains n attributes and
m data points, with Xi indicating a single data attribute of m values and Xij

indicating data point j of attribute i.

3.1 Coordinate System

We propose using a correlation coordinate system that differs from the Cartesian
coordinate system, so as to highlight how well points adhere to the correlation.
The coordinate system can be seen as a 1D parametrization of the data to an
underlying model, in this case a line. The vertical position of a data point is
the parameterization of the data. The position horizontally is more important,
demonstrating the quality of the fit. Therefore, identifying correlation primarily
relies on visibility of points to the left and right of the axis.

Transforming the data from a Cartesian domain into the correlation coordi-
nate system is a two step process laid out in Fig. 3, with the top panel show-
ing the positive relationships and the bottom panel demonstrating the negative
relationships.

The first step is a scaling operation (Scl) that forces the data into a square
region (see Fig. 3 panels 1 & 2). The process begins by normalizing the data to
[−1, 1],

Scl(Xi) =
Xi − arg minXi

Xij

arg maxXi
Xij − arg minXi

Xij
. (2)

The second step is the projection (Pmajor and Pminor) operation, which mea-
sures the location of the point relative to the positive correlation diagonal (lower
left to upper right) or negative correlation diagonal (upper left to lower right).
That measure is used to place the points into the CCP (see Fig. 3 panels 3 &
4). The now normalized location of a point i from attributes j and k determines
the major (vertical) axis by:
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(0,0) 

(3,10) 

(-1,-1) 

(1,1) 

Fig. 3. Conversion to correlation coordinate system for positive (top) and negative
(bottom) cases.

Pmajor(Xji,Xki) = Xki. (3)

The position on the minor axis is:

Pminor(Xji,Xki) =

{
α · (Xji − Xki) positive or no correlation
α · (Xji + Xki) negative correlation

(4)

The variable α is a scalar that effects the spread of data points when plotting.
We selected a constant value based upon the width of the CCP.

The plot orientation was initially chosen to be vertical in order to pack many
plots side by side on the display. Ultimately, the choice of a vertical plot is
somewhat arbitrary and will be relaxed in forthcoming sections. Nevertheless,
we present and evaluate our approach based upon the vertical orientation.

3.2 Coordinate Axis

We designed the coordinate axis to serves as a visual indicator of the existence
and direction of correlation. For 2 attributes of a dataset, Xi and Xj , PCC is
used to indicate positive correlation by ρ(Xi,Xj) > ε, negative correlation by
ρ(Xi,Xj) < −ε, and uncorrelated by all other values. The major coordinate axis
is laid out vertically and represented by a triangle whose base is at the top for
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positive correlation (Fig. 2(a)), the bottom for negative correlation (Fig. 2(c)),
and a straight line for uncorrelated (Fig. 2(b)) data.

We have also considered mapping PCC to the width of the axis, where higher
values are wider and lower values thinner. Due to the relatively small width of
the axis, we decided this mapping was not particularly informative. Instead, to
identify the strength of correlation, users should investigate the distribution of
data in the correlation coordinate system.

3.3 Coloring Data Points

A number of figures have had their data points colored based upon their PCC
value [{−1 : blue}, {0 : black}, {1 : red}]. Strictly speaking, this encoding is
redundant and not required. However, if colors are interpolated based upon PCC
value, they do carry some additional information, and in general, we find them
more aesthetically pleasing. Because our focus is on the use of the coordinate
axis and coordinate system, our method does not rely on color, and color was
not used in the user study to be described in Sect. 8.

3.4 Using CCPs for Correlation Identification

Using CCPs for correlation tasks is fairly simple. Depending upon your goal, we
suggest:

– First, use the axis to determine if the data is positive, negative, or
uncorrelated.

– Next, use the shape of the data points to determine the basic relationship
between the attributes (i.e. linear, nonlinear, etc.).

– Finally, the distance of the points from the axis can be used to estimate the
strength of correlation, with small distances indicating high correlation, and
other conditions such as outliers, noise, etc.

For example, in Fig. 2(c), by checking the axis, a negative correlation can be
seen. By observing the closeness of the data points to the axis, a strong linear
relationship with small amount of noise. On the other hand in Fig. 2(a), the axis
indicates positive correlation. From the shape of the data, it is apparent that a
nonlinear relationship exists with weak linear correlation properties.

4 Multi-attribute Visualization

Thus far, our approach can be used to investigate pairwise correlation. Our
next goal was to develop an approach for investigating multi-attribute data. We
began by looking at SPLOMs which have the advantage of showing all possible
combinations of attributes at the cost of the number of plots needed growing at
a rate of O(n2). This may leave little screen space for each individual plot. On
the other hand, the number of plots in PCPs grow at a rate of O(n) resulting in
more available space for each.



Correlation Coordinate Plots: Efficient Layouts for Correlation Tasks 271

4.1 Parallel CCP

In the PCP spirit, we first applied CCPs to multi-attribute data through a
series of equally spaced vertical parallel CCP axes, as seen in Fig. 4. To explore
additional combinations of attributes, users can drag an axis to configure the
corresponding relationship.

Much like PCP, this approach does not provide immediate access to all
attribute pairs, instead relying on user interaction to fully explore the data.
As a compromise between the plot size benefits of PCPs and the comprehen-
siveness of SPLOMs, we developed a new correlation visualization layout, the
Snowflake Visualization.

Fig. 4. Parallel CCP for 10 attributes data allow full exploration of the data, but, like
PCP, it relies on heavy user interaction.

4.2 Snowflake Visualization

We focused on a radial based design due to their efficient use of space for mul-
tiple attribute visualizations [27]. As such, we have developed the Snowflake
Visualization, which is constructed of a focus+context views.

Focus View. The focus view (Fig. 5(a)) enables investigating the correlation
of 1 attribute to all other attributes. Given n attributes, there are (n − 1) pairs
laid out around the center of the circle with equal angular spacing. By default,
the final attribute of data is the initial focus attribute. Attributes are sorted by
ID but can be reordered with other sorting methods. The inner radius (the start
of the CCP axes) is chosen such that none of the data points between CCPs
will overlap. The outer radius (the end of the CCP axes) is adjustable as to give
more or less space to the context views.

Context View. Given the attributes covered by the focus view, we designed the
context view to give complete coverage of the remaining attribute pairs. These
context views (Figs. 5(b) and (c)) are attached to the branches of the focus view.
The objective is to prevent pairs of attributes from being repeated. This is done
by organizing the pairings based on parity of n.
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(a) Focus view

(b) Upper branch of context
view

(c) Lower branch of context
view

Fig. 5. A focus view (a) and multiple context views (b–c) for Snowflake Visualization.
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Fig. 6. Branch attribute pairing matrix for n attributes, when n is odd, and the focus
attribute is d2m. Each row and column represent 1 data attribute. Pairings are found
by selecting a column for the attribute and pairing with highlight attributes.

When n is odd (m = (n − 1)/2), the organization, shown in Fig. 6, contains
all pairwise correlations in data. Each pair (di, dj), where i = 0, 1, . . . , 2m − 1
and j = i + 1, i + 2, . . . , 2m, presents correlation between 2 attributes di and dj .
The red box in Fig. 6 contains all the attribute pairs that are presented in focus
view, pairing the last attribute d2m and all other attributes (d0, . . . , d2m−1).

The context view has two groups—the upper branches and lower branches. In
the upper branches, where i = 0, . . . , m − 1, the ith branch presents correlations
between attribute di and m other attributes that are (di+1, di+2, . . . , di+m+1).
There are m pairwise correlations in each upper branch. We can see one upper
branch in the Fig. 5(b) that has 4 pairwise correlations when the number of
attributes n is 9 and m is 4.

In the lower branches, where i = m,m + 1, . . . , 2m − 1, the ith branch
presents correlation between attribute di and other attributes as shown in the
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ith column in Fig. 6. There are (m − 1) attribute pairs in each lower branch.
Figure 5(c) shows one lower branch that presents 3 pairwise correlations when
number of attributes n = 9 and m = 4.

The organization is similar when n is even (m = n/2). The focus view
presents the correlations between last attribute d2m−1 and all other attributes
in data (d0, d1, . . . , d2m−2). The context view has only a single branch type that
has m − 1 attributes pairs in each upper or lower branch.

Detail View and Interaction. Typically a single large CCP detail view is
also included with the Snowflake Visualization (a similar practice to SPLOMs).
A few interactions are included with the Snowflake Visualization. These include:

– Click-to-swap: When the user clicks an attribute, it becomes the focus
attribute. After swapping, outer attributes are reordered based upon a sorting
criteria (i.e. by attribute ID).

– Over-to-detail : As the mouse moves over a plot, the detail view is updated to
that pairing.

5 Multiway Attribute Correlations

Pairwise correlations are frequently important to understanding data. However,
as the number of attributes increases, the desire to explore relationships of mul-
tiple attributes simultaneously increases as well. The Snowflake Visualization
partially addressed the need by presenting many pairwise relationships simul-
taneously. Comparing 3 or more attributes requires looking at an exponentially
increasing number of plots and mentally fusing the distributions. We can extend
CCP design for presenting certain types of multi-attribute relationships.

To do this, we slightly modify visual metaphors of the CCP. First of all,
we remove the positive/negative metaphor encoded via the axis. This is because
multi-attribute relationships tend to not have a directional measure, only magni-
tude. Now, the parameterization model can be relaxed to any invertible function,
[s, t] = g(x̄). The vertical axis still represents a 1D parameterization of the data,
s. The horizontal axis can now represent a secondary model parameterization, t.
Finally, we represent information lost in this encoding via a series of partially
transparent boxes, one per data point, that form a “haze” surrounding the data
points. The size of the boxes found using the residual, r = ||x̄ − g−1(s, t)||.

For our experiments we have used Principal Component Analysis (PCA) to
parameterize the data. This could be replaced with any other model that fits
our functional definition. Using PCA, we set g(x̄) equal to the magnitude of the
first two principal components of the data, and the size of the box is set to the
residual. Figure 7 shows 2 examples. The SPLOM on the left (Fig. 7(a)) shows
all of the attributes of the dataset. Two subsets have been selected in red and
blue. The red subset are attributes that all appear pairwise linear. When we
use the many-attribute CCP (Fig. 7(b)), we can see that all of the attributes
are linear with respect to one another. On the other hand, the blue attributes
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appear nonlinear. When visualized with the many-attribute CCP (Fig. 7(c)), we
can see a relatively simple nonlinear 2D pattern within the data.

(a) SPLOM (b) CCP of linear
feature

(c) CCP of nonlinear
feature

Fig. 7. CCP for multiple attributes using PCA. (b) The attributes in red are a linear
feature. (c) The nonlinear feature in blue is 2D, with the residual visible in the red
haze. (Color figure online)

6 Implementation

Algorithms 1, 2 and 3 contain pseudocode for the CCP and Snowflake Visual-
ization. We have also included a sample visualization tool1 that can be built in
Processing.

Algorithm 1 is pseudocode to draw the CCP of two input data attributes with
M items as we described in Sect. 3. Drawing the Snowflake Visualization is pre-
sented in 2 parts. The focus view, based on attribute j, can be draw using Algo-
rithm 2 by drawing a series of CCPs plots around the center, with equal angular
spacing. Algorithm 3 presents the method to draw context view of Snowflake
Visualization, based on the parity of n.

Algorithm 1 . Draw Correlation Coordinate Plot.

1: // Draw axis
2: if PCC(X, Y ) > ε then
3: drawAxis(upper-triangle-axis)
4: else if PCC(X, Y ) < ε then
5: drawAxis(lower-triangle-axis)
6: else
7: drawAxis(straight-line-axis)
8: end if
9:

10:
11: // Draw items

12: for i = 1 : M do
13: [xn, yn] := normalize(Xi, Yi)
14: pmajor := xn

15: if PCC(n − 1, i) > ε then
16: pminor := yn−xn

2.0f

17: else
18: pminor := yn+xn

2.0f

19: end if
20: drawPoint(pmajor, pminor)
21: end for

1 CCPs: https://github.com/hoa84/CCPs SnowflakeViz.

https://github.com/hoa84/CCPs_SnowflakeViz
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Algorithm 2 . Draw Focus View of Snowflake.

1: // Draw attributes before focus j
2: for i = 1 : j − 1 do
3: setPosition(cen, rad, (i−1) · 360o

n−1
)

4: drawCCP (Aj , Ai)
5: end for

6: // Draw attributes after focus j
7: for i = j + 1 : N do
8: setPosition(cen, rad, i · 360o

n−1
)

9: drawCCP (Aj , Ai)
10: end for

Algorithm 3 . Draw Context View of Snowflake.

1: // Parity bit for even vs. odd n
2: even = (n is even) ? 1 : 0
3:
4: // Draw attributes after focus j
5: m = �n/2�
6:
7: // Loop ranges
8: range0 := m − even
9: range1 := 2m − 1 − even

10:
11: // Angular separation for plots
12: b0 = 180o/(m − 1 − even)
13: b1 = 180o/(m − 2)
14: for i = 0 : range0 do
15: for j = 0 to m − 2 do
16: setPosition(ceni, angi+b0∗j)

17: drawCCP (Ai, Ai+j+1)
18: end for
19: end for
20: for i = range0 + 1 : range1 do
21: for j=0 to i-m+1-even do
22: setPosition(ceni, angi + b1 ∗

(2m + j − i − 2))
23: drawCCP (Ai, Aj)
24: end for
25: for j=i+1 to 2m-2 do
26: setPosition(ceni, angi + b1 ∗

(j − i − 1))
27: drawCCP (Ai, Aj)
28: end for
29: end for

7 Usage Examples

We applied three visualization methods, including the Snowflake Visualization,
SPLOM, and PCP, to three publicly available datasets including Boston house
price data2, Pollen data3, and Hurricane Isabel data4.

7.1 Boston House Price

Boston housing data (see Fig. 8) is multivariate dataset containing 506 items
across 14 attributes. The data contains several variables that try to explain
variation in home values in the Boston area.

When comparing this dataset in a Snowflake Visualization and SPLOM, there
are a number of features observable in both visualizations. For example, in both
visualizations the Age/Rad pairing is fairly clearly a case for segmentation into
two data groups. In the SPLOM, it will likely take longer.

A big advantage in Snowflake Visualization is that it makes way for exploit-
ing additional visual channels. Take the Age/Ind pairing. In all visualization

2 http://lib.stat.cmu.edu/datasets/boston.
3 http://lib.stat.cmu.edu/datasets/pollen.data.
4 http://vis.computer.org/vis2004contest/.

http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/pollen.data
http://vis.computer.org/vis2004contest/
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(a) Snowflake Visualization (b) Scatterplot Matrix

(c) Parallel Coordinates

Fig. 8. Visualizations for Boston House data.

approaches, coloring scheme we have used makes it fairly easy to see that there
is a strong positive correlation. However, without the coloring that might not be
the case. If color had been used for some other purpose, classification for exam-
ple, suddenly we lose the ability in SPLOMs to quickly determine correlation,
while observing classification. Since CCPs do not rely on color to communi-
cate correlation, we can encode other information in the color channel without
significant loss of correlation information.

7.2 Pollen Data

The pollen data (Fig. 9) contains 3848 items each with 6 attributes. This dataset
summarizes geometric features of pollen grains.

The nature of the data makes it difficult to use the PCP due to overdraw.
Take the Ridge/Weight and Ridge/Density. Even though we can be fairly cer-
tainly that Ridge/ Weight is more negatively correlated than Ridge/Density, any
other detail is lost. We are unable to determine if it is due to outliers, nonlin-
earity, noise, etc. Techniques such as clustering, density, histogram PCPs can be
used to further improve the representations. However, for correlation strength
tasks, these approaches are not particularly beneficial.

For the Snowflake Visualization this data proves little trouble. When Ridge is
selected as the focus parameter, Density and Weight can be compared in detail.
The thinner spread of Ridge/Weight indicates a stronger linear relationship com-
pared to Ridge/Density. In addition, the details available in the view confirm
that any weakness in the correlation is due to noise.
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(a) Snowflake Visualization (b) Snowflake Visualization

(c) Parallel Coordinates

Fig. 9. Visualizations for pollen data.

7.3 Hurricane Data

Hurricane Isabel (Fig. 10) data is provided as part of the IEEE Visualization
2004 contest. This dataset contains a variety of simulated variables related to
Hurricane Isabel, a major Atlantic storm that occurred in September of 2003.
Isabel data set consists of 48 timesteps, each containing measurements of 11
attributes with a spatial resolution of 500 × 500 × 100. We also only show 7 of
the more “interesting” attributes due to space considerations. Of the original
data 25 million data items, we only use 10 million because approximately 15
million data items contain at least 1 invalid NaN field.

With 10 million data items in the Hurricane data, the overdraw in the PCP
makes it hard to understand any relationships in the data. For example, the
relationship Temp/Pres shows only the bowtie shape, losing the individual data
patterns. In many ways, SCPs do a better job than PCPs. The Temp/Press rela-
tionship is visible with the SCP. However, clear interpretation is difficult, since
as Temp increases, Press first decreases, then increases, and finally decreases.

Our approach presents these relationships more clearly. The direction and
strength of relationship between Temp and Pres can be identified in Snowflake
Visualization. The lower triangle shape of axis identifies the negative relation-
ship. Additionally, the data points distribution, mostly being of similar distance
to the axis with a few spread out, enables identifying that this relationship is
not strongly negative and nonlinear.



278 H. Nguyen and P. Rosen

(a) Snowflake Visualization (b) Scatterplot Matrix

(c) Parallel Coordinates

Fig. 10. Visualization techniques for Hurricane data.

8 User Study on Identifying Correlation

To further evaluate our visualization methods, we conducted a user study com-
paring CCP with SCP and PCP. In this study, we performed 3 experiments that
ask subjects to perform correlation related tasks.

We invited 25 participants to take part in our study, 9 female and 16 male,
all graduate students from a variety of science and engineering fields. Their ages
range from 23 to 35 years old. We asked the subjects to self-report their level
of familiarity with visualization—3 reported themselves as experts; 9 reported
themselves as familiar; and 13 reported themselves as not familiar.

In each experiment, subjects started with a short set of slides and/or video
to introduce the necessary background. Subjects were then given practice ques-
tions where, after answering, the correct answers were provided. They would
then perform the experimental tasks. For each test, the subjects’ answers and
response times were recorded. Following the experiment, subjects completed a
short survey. In total, the study lasted less than one hour, including training
and testing. For all visualizations, gray color was used for axes and labels, black
color was used to present data items.

The software for the user study was built using C++ and Qt, and run on a
MacBook pro with a 2.5 GHz Intel Core i5, 4 GB RAM, and 512 MB Intel HD
Graphics 4000. The study used a particle physics dataset containing 41 output
attributes and 4000 data items per attribute. The data represents a parameter
space search of 25 input attributes generated by a series of tools that simulate the
theoretical physical properties of subatomic particles under the Supersymmetic
extension of the Standard Model of particle physics.

The independent and dependent variables used in each experiment can
be found in Table 1. We used a mixed experimental design using t-testing to
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Table 1. Variables used to test hypotheses.

Independent variables Potential values

Data [ H1 | H2 | H3 | H4 ] 2 random attributes from 41 attribute data

Data [ H5 | H6 | H7 ] 10 or 21 attributes from 41 attribute data

Plot [ H1 | H2 | H3 | H4 ] SCP/PCP/CCP

Plot [ H5 | H6 | H7 ] SPLOM/PCP/Snowflake Visualization

Question [ H1 | H2 ] How are the 2 attributes correlated?

Question [ H3 | H4 ] What is the type of correlation?

Question [ H5 ] How are the 2 attributes correlated?

Question [ H6 ] How many attributes are correlated to i?

Question [ H7 ] Which attributes are correlated to i?

Dependent variables Potential values

Answer [ H1 | H2 | H5 ] High Positive Correlation

Low Positive Correlation

No Correlation

Low Negative Correlation

High Negative Correlation

Answer [ H3 | H4 ] Nonlinear Correlation

Linear Correlation

No Correlation

Answer [ H6 ] Number of attribute

Answer [ H7 ] List of attribute

Response Time [ all H ] Time recorded automatically

calculate t-value, p-value, mean difference, and 95% confidence interval to con-
firm our hypotheses. Only mean value and p-value are reported, but other data
can be provided upon request.

8.1 Exp 1: Speed/Accuracy in Pairwise Correlation

When looking at SCP & PCP, 2 challenges persist. First, it can be confusing
to determine positive versus negative correlations. Granted, for experts this is a
trivial task, but for others, it can be confusing. In many ways the identification
of correlation direction is easier with PCP than SCP—parallel lines positive and
crossing lines negative. Second, there is some ambiguity when trying to identify
the strength of correlation between 2 attributes. Ambiguity is a much larger
problem for PCP. When the relationship is noisy or nonlinear, overlapping lines
quickly obscure detail.

When comparing CCP with these other methods, CCP: (1) provides simple
visual cues making identification of the direction of correlation fairly trivial; (2)
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and reduces (not eliminates) the ambiguity by concentrating on correlation in
the formulation of the coordinate system.

Given these factors, we developed 2 hypotheses as follows:

H1 | H2: Using a Correlation Coordinates Plot will enable more accurate and
faster identification in direction and strength of correlation between 2 attributes
than a [H1: Scatterplot | H2: Parallel Coordinates Plot].

Method. The experiment is summarized in Table 1 (H1 & H2). For a block of
trials, we showed a participant a plot between 2 random attributes using either
the SCP, PCP, or CCP method and asked a forced choice question. Subject
accuracy and time were measured.

At the start of the experiment, participants were given an introduction to
correlation, instructions on finding correlation in SCP, PCP, and CCP, and 6
training questions. Participants were then given 21 experimental questions (7
for each plot type, interleaved order).

Results and Discussion. The results of both the measured speed and accuracy
of our experiments are shown in Fig. 11(a) and (b).

The results from Fig. 11(a) shows that when comparing accuracy, CCP
showed improvement over SCP on average 91% compared to 69%, with statistical
significance (p = 0.001). We also looked at subjects performance in just identi-
fying the direction of correlation, where CCP had an accuracy of 99% compared
to 79% for SCP, though not quite with statistical significance (p = 0.06). The
response times (Fig. 11) showed similar results with CCP responses averaging
11.71 s compared to 23.4 s for SCP (p = 0.001). Given that in our experiments
CCP outperformed SCP in both speed and accuracy, we consider H1 confirmed.

A similar analysis shows that the accuracy CCP was 91% compared to 48%
for PCP (p = 0.001). For identifying type only, CCP had an accuracy of 99%
compared to 76% for PCP, though not with statistical significance (p = 0.09).
The response times (Fig. 11) showed a similar result with CCP coming in on
average 11.71 s compared to 24.5 s for PCP (p < 0.001). Given that CCP out-
performed PCP in speed and accuracy, we consider hypothesis H2 confirmed.

Although not explicitly selected as a hypothesis, we are also able to compare
the performance of SCP and PCP. The results showed that SCP had a higher
overall accuracy on average, 70%, compared to 58% for PCP (p = 0.048). How-
ever, when looking at type accuracy only, SCP had no statistical significance
in average accuracy of 76% compared to 85% for PCP (p = 0.25). The results
showed no statistical significance in average response times of SCP and PCP
of 24.54 s and 25.78 s (p = 0.774), respectively. This result aligns with prior
work [12,22,23].

The results of Exp. 1 confirmed the hypotheses H1 and H2, indicating that
using CCP subjects can identify correlation in less time and with higher accu-
racy compared to SCP and PCP. In our informal discussions with subjects after
the experiment, they indicated that the shape of the axis and the distribution of
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Fig. 11. Results of exp. 1 and exp. 2 show CCP (green, col. 3) outperforming SCP
(blue, col. 1) and PCP (red, col. 2) in speed (sec) and accuracy (%). In all figures,
error bars indicate standard deviation. (Color figure online)

points in CCP greatly assisted their comprehension of the correlation. Subjects
complained that both the SCP and, in particular, the PCP were more difficult
to distinguish positive and negative correlation in scenarios with low correla-
tion. However, they found using CCP enabled them to easily recognize both the
direction and strength.

8.2 Exp. 2: Differentiating Linear, Nonlinear, and Uncorrelated
Relationships

Identifying nonlinear relationships between attributes can also be an important
task. When comparing CCP with other methods, CCP provides simple visual
cues making identification of correlation direction easier. Beyond that, CCP and
SCP give similar visual cues (i.e. the tasks performed are basically the same)
for the shape of the relationship, linear or nonlinear. This motivates our next
hypothesis:

H3: Using a Correlation Coordinates Plot and a Scatterplot will result in sim-
ilar accuracy and speed for identification of linear, nonlinear, and uncorrelated
relationships in 2 attributes.

For PCP, identifying these relationships is far more challenging. The overdraw
ambiguity that plagues linear correlations becomes significantly worse as even
more lines overlap each other in nonlinear cases. This will slow and confuse users.
This leads to our next hypothesis:
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H4: Using a Correlation Coordinates Plot will result in more accurate and faster
identification of linear, nonlinear, uncorrelated relationships in 2 attributes than
a Parallel Coordinates Plot.

Method. The experiment is summarized in Table 1 (H3 & H4). At the start
of the experiment, participants were given instructions on linear and nonlin-
ear correlation. Participants were then given 3 training questions followed by 9
experimental questions (3 for each plot type, interleaving order). For each ques-
tion, participants saw a plot from 2 random attributes and were asked a forced
choice question. Subject accuracy and time were measured.

Results and Discussion. The results of the measured speed and accuracy of
our experiments are shown in Fig. 11(c) and (d), with all differences showing
statistical significance (p < 0.005). The results of our experiment showed that
CCP outperformed SCP. Our hypothesis H3 however had predicted that the
performance of CCP and SCP would be identical. This leads us to reject H3. In
our discussions with subjects after the experiment, they indicated that the shape
of axis and the distribution of points in SCP was more difficult to distinguish
and that CCP assisted their comprehension of these specific types of correlation.

Due to CCP substantially outperforming PCP in both speed and accuracy,
we consider hypothesis H4 confirmed. As anticipated, participants complained
that the overdraw problems made it difficult differentiate linear vs. nonlinear
correlations in PCP.

8.3 Exp 3: Accuracy/Speed in Multi-attribute Datasets

The Snowflake Visualization was designed specifically for the task of quickly and
accurately exploring pairwise correlations in multi-attribute data as compared
with SPLOMs and PCP. As the number of attributes increases each SCP within
a SPLOM becomes quite small and the number of plots becomes overwhelming.
For PCP, as the number of attributes increases, the interaction required for many
tasks puts increased pressure on the user to explore for features of interest. With
these factors in mind, we developed 3 hypotheses:

H5: Using a Snowflake Visualization will enable more accurate and faster iden-
tification of correlation between 2 attributes in multi-attribute data than a Scat-
terplot Matrix or Parallel Coordinates Plot.

H6: Using a Snowflake Visualization will enable more accurate and faster iden-
tification of how many attributes are correlated with a chosen attribute in multi-
attribute data than a Scatterplot Matrix or Parallel Coordinates Plot.

H7: Using a Snowflake Visualization will enable more accurate and faster iden-
tification of which attributes are correlated with a chosen attribute in multi-
attribute data than a Scatterplot Matrix or Parallel Coordinates Plot.
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Method. The experiment is outlined in Table 1 (H5-H7). Each participant
was given an introduction and demo video for each visualization method and
completed 12 sample questions using data unrelated to experimental trials. Then,
each performed 21 experimental questions interleaving first between visualization
types, then question types.

Results and Discussion
Identification of a Pairwise Correlation in Multi-attribute Data. The results of
measured speed and accuracy in Fig. 12 (Type 1) show the Snowflake Visual-
ization improved accuracy and speed over SPLOMs and PCPs with statistical
significance (all p < 0.05). The average accuracy for Snowflake Visualization
was 89% compared to 67% for SPLOM and 64% for PCP. The response times
(Fig. 12) for Snowflake Visualization came in at an average of 19.9 s compared
to 31.3 s for SPLOM and 26.1 s for PCP. Given that Snowflake Visualization
outperformed SPLOM and PCP in speed and accuracy, we consider hypothesis
H5 confirmed.
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Fig. 12. Exp. 3 results show CCP (green, col. 3) outperformed SCP (blue, col. 1) and
PCP (red, col. 2). (Color figure online)

Finding the Number of Correlated Attributes in Data. Again, the results of the
experiments showed that the Snowflake Visualization improved accuracy and
speed over SPLOMs and PCPs (see Fig. 12, Type 2) with statistical significance
(p < 0.05). Therefore, we consider hypothesis H6 confirmed.

Finding which Attributes are Correlated in Multi-attribute Data. The results of
this final test also showed improved accuracy and speed over SPLOMs and PCPs
(see Fig. 12, Type 3) with statistical significance (p < 0.05), leading us to also
consider hypothesis H7 confirmed.

The Snowflake Visualization’s focus+context style greatly assisted subjects
interactions and comprehension when working through multiple pairwise correla-
tion questions. The participants complained that small SCPs made the SPLOM
difficult to use, due to inability to see individual plots and difficulty tracking
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rows or columns of plots. Using PCP, participants complained that the number
of dragging operations required to explore multiple correlations made it very
difficult for them.

9 Discussion

User Study Task Selection. Selecting realistic tasks for a user study is a challeng-
ing problem when users are unfamiliar with the data and potentially visualiza-
tion altogether. We have selected a number of simple tasks, which are building
blocks for more complicated data analysis tasks that are commonly performed.
The overall out performance of the CCP over SCP and PCP stands as evidence
of its superiority, which should translate to more complex tasks.

Abstraction Selection. SCP and PCP have served a straw man role in our eval-
uation. There are any number of modifications that could be applied to either
technique to better inform the user about correlation. However, since there is no
single de facto standard, we did not want our evaluation to be clouded by ques-
tions of abstraction selection in SCP or PCP. Therefore, we stuck to the basic
formulations of each approach. We hope this paper spurs the community to dig
deeper into this subject and generate a more extensive evaluation of approaches,
such as those of Harrison [12] and Kay [22].

Very High Attribute Count Data. For data with large numbers of attributes, we
believe that approaches to extract the natural dimensionality of data, such as
PCA, in combination with techniques such as CCP, will be critical in analysis.
For all practical purposes, beyond 30 or 40 attributes, our approach is no longer
viable. However, this is a similar limitation to SPLOMs and PCPs. We consider
higher-dimensional cases to still be an open problem.

10 Conclusion

Correlation Coordinate Plots have been developed with the specific task of cor-
relation identification. They have distinct advantages when compared to general
task visualizations such as SCP and PCP. The advantages, as confirmed by our
user study and real-world datasets, include:

– providing simple visual cues that make identification of the existence and
direction of correlation fairly trivial;

– improving estimation of correlation strength by focusing the coordinate sys-
tem on model fit; and

– improving identification of linear, nonlinear, and uncorrelated data by reduc-
ing ambiguity in the visualization.
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In addition, the Snowflake Visualization showed significant performance
improvements over SPLOMs and PCPs. The Snowflake Visualization is an effi-
cient focus+context style layout representing a fair compromise between space
efficient design, comprehensive visualization, and reduced user interaction for
showing all pairwise correlations in multi-attribute data.

In conclusion, we believe that the CCP and Snowflake Visualization represent
complementary approaches to existing techniques, replacing existing approaches
only where correlation is the major feature of focus in data. We believe that
more of these task specific approaches are on the horizon and will provide data
analysts better, faster access to relevant information in their data.
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