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Abstract

The large volume of data associated with social networks
hinders the unaided user from interpreting network content
in real time. This problem is compounded by the fact that
there are limited tools available for enabling robust visual
social network exploration. We present a network activity
visualization using a novel aggregation glyph called the
clyph. The clyph intuitively combines spatial, temporal,
and quantity data about multiple network events. We also
present several case studies where major network events
were easily identified using clyphs, establishing them as a
powerful aid for network users and owners.

1 Introduction

Given the volume of data available on modern social net-
works, it has become difficult for an unaided user to query
and interpret the content of the network in a near real-time
environment. By arming the user with an intuitive visual
analysis tool for twitter, we aim to empower individuals,
such as network users or owners, to better understand the
characteristics of social network activities in the context
of time, location, and content.

Direct representation of this data does not work well
since there are spatial, temporal, and textual components
to a tweet. Combining these data elements in any naive
fashion will produce a visualization which is too cluttered
to be effective, and removing any component will detract
from the explanatory power enabled by the visualization.
Beyond just including these elements in a visual design, the
ability to explore the data at many scales (i.e. statewide,
countywide, citywide, etc.) must be incorporated for the
visualization to be truly useful.

To address these challenges, we produced a system which
ties together the spatial, temporal, and quantity data asso-
ciated with tweets into single a streamlined visualization
with textual data summarized in a linked companion in-
terface. This was accomplished using our novel visual
representation of spatiotemporal data dubbed the “clock”
glyph or clyph, as shown in Figure 4. The clyph combines
the locations of the tweets and the range of times at which
they occur for an abstracted area. Clyph benefits include:

1. A visual representation which combines raw tweet
data from many tweets while minimizing the data
loss inherent in aggregation.

2. A tool for exploring tweet geography at multiple
scales, emphasizing trends in time and location.

3. A tool that enables users to detect major network
events (i.e. concerts, conventions, etc.).

Figure 1 demonstrates how a user might interact with
our system. The clyph is used as a visual abstraction of
multiple tweets which are spatially similar but temporally
varied. The clyph is located in the center of all tweets it
abstracts. The interior of the clyph displays temporal data
marking the median, quartiles, and range for tweet times.
The notches on the perimeter indicate both the number
and relative direction of each tweet abstracted by the clyph.
A companion text display is provided which displays a
list of tweets for a selected clyph, along with the 20 most
frequently used words. The example interaction in Figure 1
shows a user beginning with a citywide view of twitter data
for Salt Lake City, then progressively zooming in to further
differentiate tweets. At each level of zoom, the clyphs are
recalculated to maximize the display of information while
avoiding any overlap. As the user explores the city at
the top-level zoom, anomalous keywords hint at possible
events (Figure 1 left). As the user zooms, the clyphs
begin to differentiate from one another and more event-
related keywords appear in some for some clyphs (Figure 1
middle). At the lowest-level zoom, the event is localized
in both location and context (Figure 1 right). Finally, the
clyphs and their tweets reveal that an outdoor retailer’s
market has taken place near the local convention center.

2 Related Work

Social network data can be explored in numerous ways, the
majority which explore relationships within the network.

Relationships within social networks are often explored
using node-link diagrams. For example, Heer and Boyd [9]
designed an application for visual exploration and analy-
sis of online social networks by using node-link network
layouts. There are several well-known techniques for im-
proving the effectiveness of node-link diagrams [19] which
use strategies to group the visualization of nodes into re-
gions according to additional attributes such as categorical,
ordinal, and binned numerical data in node-link diagrams.
Node-link diagrams have also been enhanced by using
adjacency matrices as linked-views, providing a hybrid
representation that draws heavily upon two traditional
node-link diagram representations. Finally, Brandes and
Kick [2] presented a gestaltline approach that shows type,
extent, and time of relationships.

When graph data is attached to geospatial data, such
as that of Twitter follower networks, flow mapping has
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Figure 1: Example interaction at three scales. Left: Highest zoom gives an overview of the city. Middle: Midscale
visualization begins to show more detailed information. Right: Tightest zoom level points towards specific events.

been an effective visualization tool. Rae [17] applied
flow mapping within contemporary GIS by mapping a
large migration matrix from the United Kingdom’s 2001
census. Guo [6] used several methods such as hierarchical
regionalization, flow mapping, and multivariate clustering
and visualization to discover major flow patterns relations
from migration data in the United States. This graph
data is often noisy. A number of approaches such as edge
clustering methods [16, 4] and edge bundling methods [10]
have been used to reduce the noise, helping generate flow
maps.

Perer and Shneiderman [15] proposed a system that
uses attribute ranking and coordinated views to allow
users to explore social networks using overviews, filtering
nodes, finding outliers, and visually coding the network
visualization. This interactive application inspired further
research in social network visualization. Groh et al. [5]
proposed a dynamic social network visualizer to visualize
temporal social network data. It introduced the 3D inter-
polated NURBS ”tubes” to represent activity and social
proximity for a certain actor. It is one of the few attempts
in applying 3D to social network visualization. Luo et
al. [13] introduced a spatial-social network visualization
tool, the GeoSocialApp, which provided the geographical,
network, and attribute views to help explore the different
attributes of spatial-social network data. This system has
been extremely informative in our research, as it encodes
datasets similar to ours and emphasizes dimensions we
are also interested in. Cho et al. [3] explored patterns of
human mobility on three large datasets using statistical
methods and visualization methods. The network flip
books and dynamic movies introduced by McFarland [11]
provided insight into some of the interactive aspects of a
network visualization.

Several methods are proposed to solve the problem of ef-
fectively visualizing the multivariate and multidimensional
data. Guo et al. introduced computational and geographic
methods to explore and visualize multivariate spatial pat-
terns within high-dimensional geographic data [8] and
later derived complex patterns from spatiotemporal and
multivariate data sets [7]. While our data is not necessarily
as high-dimensional as what is discussed in these papers,
they did inform the design of our own system. In addition

to visualization solutions for multidimensional data, we
also briefly explored using simple data mining techniques
to extract meaning from the data. Keim and Kriege [12]
evaluated their own visual data mining techniques and
compare them to other popular techniques for visualizing
multidimensional data.

3 Visualizing Individual Tweets

In order to identify network events within tweet data, we
began by exploring methods to visualize individual tweets
simultaneously.

We began with the most obvious abstraction for spatial
data, a simple circular glyph representing a single tweet
(Figure 2a). Placing many of the circular glyphs on a map
allowed spatial clusters to become very apparent, as seen
in Figure 2, box A. However, the visualization did not
show any temporal references or temporal clustering. This
could cause misinterpretation of a busy place as interesting
event. Animation, i.e. glyphs appearing and disappearing,

(A)

(a) Simple circle node

(B)

(C)

(b) Individual clock glyph

Figure 2: Individual tweet visualizations
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was used as an alternative, but the length of tweet visibility
limited the bandwidth of event length. For example, short
visibility meant the long-duration events were lost, while
long visibility would obscure short-duration events.

Our next approach was to enhance the interface with
temporal information. We settled upon commonly under-
stood design metaphor, a wall clock. Each circular glyph
had a minute and hour hand added to its display, along
with text indicating a.m. or p.m. (Figure 2b). For sparsely
located, non-overlapping tweets, this representation gives
quick access to both the location and timing of the tweet,
as seen in Figure 2, box C. However, as tweets begin to
gather spatially, visual cluster ensued, and the information
was lost, as seen in Figure 2, box B.

4 Tweet Aggregation

The number of tweets presented in the display can be quite
large, in particular when large areas or time spans are
cover. To effectively display all of this data, it is necessary
to aggregate raw the data so that it can be represented by
a glyph which minimizes or eliminates any overlap between
neighbors. We did this by clustering tweet with nearby
locations. However, finding the combination of glyphs is an
optimization problem which is computationally expensive.
In order to maintain interactive exploration, we chose
to use a greedy method, based upon the node-grouping
algorithm proposed by Newman [14], for selecting the
location of glyphs which completes in worst case O(n2)
time.

Data: List M which contain all tweet locations
within the current range (as defined by the
zoom level and location)

Result: Set P of glyph locations
1 while M is not empty do
2 Let p be a random point from M
3 Insert p into P
4 foreach m in M do
5 if distance(p,m) < 2r then
6 Remove m from M
7 end

8 end

9 end

Algorithm 1: Tweet clustering algorithm

Our aggregation algorithm, described in Algorithm 1,
takes input M, the list of all tweet locations for the current
configuration. A point p is then randomly chosen from M
(line 2). All points in M within radius 2r (twice the radius
of the glyph) of p are removed from M and assigned to the
glyph centered at p (lines 4-6). The selection of a radius
of 2r leaves our layout somewhat sparse, but guarantees
that no two glyphs will overlap. This process is repeated
until all points are assigned.

In addition to spatial aggregation, we also enable the
user to adjust the temporal range of the data. By providing

a time slider, we facilitate identifying events around times
of interest in addition to locations of interest through the
map view.

5 Visualizing Multiple Tweets
with Clyphs

Our spatiotemporal aggregation effectively removed the
clutter that previously plagued our visual interface; how-
ever, significant information is lost to aggregation. There-
fore, our glyph needed further refinement improve the
volume of information communicated.

Our next approach was to include timing information
for multiple tweets within a single glyph. This was done
by extending the clock representation to a single handed
clock. Now, the clock glyph can represent multiple tweets
by placing one mark for each tweet within the glyph
representing it (Figure 3a). In addition to the advantage
of reducing clutter, this design also implicitly encodes of
the volume of tweet activity. However, as the number
of tweets and thereby the number of marks grow, this
interface can become cluttered. If too many lines are
drawn, they are no longer differentiable. This will limit
the ability to visually measure quantity. Even worse,
the clutter can lead to misinterpretation of quantity. For
example, the boxed glyph in Figure 3a shows dense twitter
activity at apparently all hours of the day. In this case,
no further meaning can be derived.

To prevent this potential clutter, we decided to maintain
our clock metaphor, but move to a statistical view of
the data. We decided upon median, upper and lower
quartile, and upper and lower range as the most significant
statistical elements of the data. Figure 4a demonstrates

(a) Initial clock glyph

(b) Quartile glyph

Figure 3: Multiple tweet visualizations
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(a) Description of the visual elements

(b) Regular

(c) Spatial

(d) Temporal

Figure 4: Description of visual elements (left) and varia-
tions of notch location (right) for the clyph

how we integrated these elements into the clyph. The
median value is represented by a solid red line. The region
between the upper and lower quartiles is colored in a
yellow-orange tone. Finally, the range is represented by
the region marked in green. Figure 3b shows this version
of the glyph in action. In Figure 3a, meaning was lost with
too many marks. However, in Figure 3b, the quartiles
and median of the data in the glyph tell a different story.
Inspection of the glyph shows that the bulk of the twitter
activity in this region occurred between approximately
10:00 and 18:00. This difference makes it apparent that
aggregating the noisy data into the glyph enables the user
to better derive meaning from the data.

This statistical view allows the representation to scale to
any quantity of tweet data without cluttering the display.
However, this new presentation loses any sense of quantity
of tweets. The final clyph representation, presented in
Figure 4, has marks distributed along the outside of the
clyph, each one representing a different tweet. This design
represents the quantity of tweets as well as the distribu-
tion. We present three alternative to the placement of the
notches. The first (Figure 4b), places notches at evenly
distributed locations, giving only a sense of volume. The
second (Figure 4c), places notches at the spatial direction
of the tweet, relative to the centroid of the clyph. This
gives access to additional spatial information. The final
version (Figure 4d) places notches at the time in which
each tweet occurred giving a better sense of temporal
distribution.

6 Implementation

The data used in our experiments was obtained using a
crawler we developed. The Java-based crawler collects a
stream of tweet data and stores it into a MySQL database.

Data collection was limited to only geolocated tweets
within the state of Utah, though our examples focus on
Salt Lake City and surrounding areas. The data was
collected from August 1, 2012 through August 26, 2012.
Since we only collect tweets with location information,
our results were limited to approximately 184,000 total
tweets or slightly over 7,000 individual tweets per day.
The database collected over that time frame was 195 MB.

Our visualization tool was written in Java using Pro-
cessing [18] and features an interactive interface which
renders at 25 frames per second. The visualization tool
directly queries our MySQL database for near real-time
updating of visualization results.

The interface displays a map, provided by modest
maps [1], and places clyphs at appropriate locations. A
time slider enables the user to pick the time frame for
which the clyphs are generated. A side panel provides
textual feedback, listing all tweets from a selected clyph.
In addition, the 20 most frequently used words (exclud-
ing common words) are extracted from the tweets of the
selected clyph. We found these keywords exceedingly
useful in determining the purpose of an event (i.e. fair,
concert, sporting event, etc.) after it was located using
our visualization.

7 Case Studies

We now present a series of case studies which verify
our tool’s usefulness at identifying large network events.

(a) One week before the soccer game

(b) The day of the soccer game

Figure 5: Soccer game clyph visualization
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(a) Seven days before the first day of school

(b) The first day of school

Figure 6: Visualization of the area surrounding the
University of Utah with clyph notches oriented by time

Specifically, we looked for events in areas in and surround-
ing Salt Lake City for the month of August 2012. For
all figures, except Figure 6, the notches in the clyphs are
positioned using spatial orientation. In Figure 6, notches
are instead oriented by time.

7.1 Short-Run Events

The easiest events to observe with our system are short-
term events, so these were the first type of activities
we looked for. Several concerts, markets, and sporting
events were emphasized by the clyph in our observations.
One illustrative event was a Real Salt Lake soccer game
which occurred on August 18, 2012. We first noticed an
anomaly while moving temporally from the the date a
week before the game (Figure 5a) to the date of the game
itself (Figure 5b). The visual difference between the clyphs
made it apparent that some event was occurring at the
location of the stadium.

Upon inspection of the tweets from the clyph centered
in this area, we were able to see that almost all of the
tweets were focused on events happening at the game.
Tight temporal range of the check-ins, coupled with the
median mark, enabled us to deduce that the game occurred
some time between 17:00 and 22:00, with peak activity at
18:00. Additionally, the close proximity of the quartiles
and the range boundaries told us that, as one would expect,
nothing is happening at the stadium when it is empty.

7.2 Single Day Events

To identify events on the scale of a single day, we compared
clyph placement and composition between proximal days.
One of the more prominent events we observed was the first
day of school at the University of Utah. We first noticed
a spike in activity between the Monday school started
and the preceding Friday. Compared to the preceding
Monday (Figure 6a), there is an even greater increase
in the number of clyphs as well as the per-clyph tweet
frequency (Figure 6b). The realization we had with the
clyphs for this event was that they were not centralized;
that is, after finding a hint of an event from a single
clyph in the area, we explored several other clyphs to
derive full understanding of the event. This was a logical
outcome of the event being more widespread than the
soccer game we previously explored. After investigating
the text associated with several clyphs, we were able to
determine that the event was the first day of school from
keywords on the right panel in (Figure 6b). As we further
explore the clyphs in Figure 6b, we notice a big spike in
the number of tweets in the boxed area over the library.
The distribution of clyph notches shows lot of activities
happened from 8:00 to 11:00 in the morning and from
13:00 to 22:00 in the evening. The median of the tweets
is at around 10:00 on the clyph indicates that there are
highly concentrated tweets occurred in the morning. The
gap from noon to 13:00 coincides with the fact that the
students spread out to have lunch away from library.

7.3 Multi-Day Events

Festivals were the most common multi-day activity high-
lighted. The Park City Arts Festival was the first multi-
day event we noticed, as there was an observable spike in
localized tweet activity during the festival relative to the
weekdays surrounding its occurrence (Figure 7). As with
the soccer game, we were able to verify that the real time
span of the event was well-represented by the median and
range data, as the range data encompassed the festival
hours within 2 hours, and the median mark occurs roughly
in the middle of the festival hours. The quartiles also give
interesting insight into when the festival was busiest (ap-
proximately 12:00 to 18:00), and they match the intuitive
prediction that the timing of this maximum would be in
the afternoon hours.

8 Conclusion and discussion

In conclusion, we have presented a novel approach to
multiscale visual analysis for geolocated network events.
Our approach uses aggregation to support many scales
with a novel visual representation, the clyph, to maximize
the display of information. We have demonstrated with
three case studies that this approach enables users to
identify major network events with relative ease.

There remain a few of limitations and associated future
work with our approach. The first is that our system
still relies upon visual analysis to identify events. Ideally,
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(a) The day before art festival (b) The first day of festival (c) The second day of festival

Figure 7: Clyph visualization of art festival over three days

automatic or semi-automatic machine learning approaches
could be leveraged to assist in the visual analysis, re-
ducing the number of visual elements needing inspection.
Next, our greedy aggregation algorithm is non-optimal,
but worse, it leaves the visual display somewhat sparse.
Identifying better approaches to pack glyphs tightly will
increase the available information load significantly. The
clyph representation also has a few limitations. The clyph
assumes a Gaussian distribution in the data. While for a
single event, such an assumption seems reasonable, when
multiple events occur within a single location, the Gaus-
sian assumption falls apart. More likely a linear com-
bination of Gaussians makes sense; however, other dis-
tributions should be investigated as well. Finally, the
scale of identifiable events is loosely correlated to the scale
of the visualization area, obscuring possibly significant
events as the view zooms out. If, for example, we were to
look at a visualization of the entire state of Utah, most
significant network events would likely appear simply as
noise because of the large total number of tweets. Further
examination of bottom up analysis methods, which would
identify events at a local level and propagate them upward,
are necessary.
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