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Critical Point Cancellation in 3D Vector Fields:
Robustness and Discussion

Primoz Skraba, Paul Rosen, Bei Wang, Guoning Chen, Harsh Bhatia and Valerio Pascucci

Abstract—Vector field topology has been successfully applied to represent the structure of steady vector fields. Critical points, one of
the essential components of vector field topology, play an important role in describing the complexity of the extracted structure.
Simplifying vector fields via critical point cancellation has practical merit for interpreting the behaviors of complex vector fields such as
turbulence. However, there does not exist an effective technique that allows direct cancellation of critical points in 3D. This work fills this
gap and introduces the first framework to directly cancel pairs or groups of 3D critical points in a hierarchical manner with guaranteed
minimum amount of perturbation based on their robustness, a quantitative measure of their stability. In addition, our framework does
not require the extraction of the entire 3D topology, which contains nontrivial separation structure, and thus is computationally effective.
Furthermore, our algorithm can remove critical points in any subregions of the domain whose degree is zero and handle complex
boundary configurations, making it capable of addressing challenging scenarios that may not be resolved otherwise. We apply our
methods to synthetic and simulation datasets to demonstrate its effectiveness.

Index Terms—Flow visualization, Vector field simplification, Robustness, Computational topology
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1 INTRODUCTION

C OMPLEX and often large-scale vector fields arise from a vast
variety of scientific and engineering applications, including

climate study, combustion dynamics, seismology, medicine, auto-
mobile and aircraft design. Topological methods have been em-
ployed extensively to extract features, such as critical points and
separatrices (i.e., special streamlines or stream surfaces starting
from the saddle points), for the purpose of vector field visualiza-
tion [1], compression [2], design [3], [4] and simplification [5].

Applications requiring the study of turbulent flow in partic-
ular, may generate vector fields with a large number of critical
points, leading to a visually cluttered representation that hinders
intuitive interpretation of the flow behavior. A popular solution
to address such a challenge is to simplify the flow by system-
atically reducing the number of critical points in the obtained
topological representations. Such topology-based simplification
schemes typically cancel pairs of critical points that are directly
connected by separatrices in order of their importance based
on certain geometric proximities (e.g., distance or area). While
this strategy may work well for 2D vector fields [4], [5], [6],
it is not straightforward to extend to 3D vector fields due to
the increasing complexity of 3D topology. In addition, the full
3D vector field topology can potentially be expensive to extract
due to the increased dimensionality of the separatrices as well
as numerical instabilities [3], [7], [8], making it less practical
for large-scale datasets. Furthermore, such simplification typically

• P. Skraba is with Jozef Stefan Institute, Slovenia.
E-mail: primoz.skraba@ijs.si

• P. Rosen is with University of South Florida.
E-mail: prosen@usf.edu

• B. Wang and V. Pascucci are with Scientific Computing and Imaging
Institute, University of Utah.
E-mails: {beiwang, pascucci}@sci.utah.edu

• G. Chen is with University of Houston.
E-mail: chengu@cs.uh.edu

• H. Bhatia is with Lawrence Livermore National Laboratory.
E-mail: bhatia4@llnl.gov

does not take into account the influence of flow magnitude, an
important physical property of the flow.

In general, we believe that there has been little work done
towards topological simplification of 3D vector fields, especially
the development of techniques that do not depend upon the com-
putation of the topological skeleton. In fact, the only work that we
found in literature is based on the extraction and visualization of
high-order critical points [8]. Simplification is achieved by looking
at the behavior of the flow on a bounding surface surrounding a
cluster of first-order critical points. A simplified representation of
the 3D vector field topology is then obtained by merging lower-
order critical points into higher-order ones. It has been shown
that the subsequent vector field representation is substantially
simplified accordingly after this merging process. Fundamentally
different from their approach, we propose the first framework
that directly cancels pairs of 3D critical points with guaranteed
minimum amount of perturbation for 3D vector fields. Importantly,
it does not require computing the entire topology of the vector
field. Although the minimum amount of perturbation may indicate
a small change to the vector field behavior in the vicinity of
the critical points, it prevents the introduction of misleading
information. Therefore, we believe that the reduced number of
critical points will lead to a simplified topological representation
of 3D flows. In particular, our contributions are as follows, (see
Figure 1 for an illustrative example):

• We propose a novel, scalable and hierarchical simplifica-
tion strategy for 3D vector fields, where sets of critical
points are canceled based on a measure of their stability,
quantified by the topological notion of robustness. The
resulting vector fields are smooth, and with bounded
perturbations.

• We generalize our algorithm to remove critical points in
any connected region of the vector field (even the ones
with non-trivial topology), as long as it has zero degree. It
does not require special boundary configurations.
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Fig. 1. A synthetic example that illustrates the complexity of 3D simplification and demonstrates our robustness-based simplification of critical points.
For a pair of critical points residing within a region near a vortex core (as illustrated by the highly rotating streamlines), we showcase the global
flow behavior before (left) and after (right) simplification. Before simplification (left), the identification of this vortex core may return a number of
disconnected curves due to the existence of a pair of critical points (sinks are red, saddles are blue). Cancellation of these critical points (right)
eliminates their interferences in the behavior of the vortex core. Namely, the vortex core exhibits higher continuity, which is highlighted by a bundle
of red streamlines passing through the center of the region (i.e., without stopping at the original critical points). In this case, the simplification results
in local rather than global changes to the flow behavior, as indicated by streamline modifications in close proximity of the critical points, and such
local changes are crucial to the study of the spiral region and the identification of vortex core. See supplementary video for details.

2 RELATED WORK

Vector field simplification. Vector field simplification can be ac-
complished via topology-based or non-topology-based techniques.
Non-topology-based techniques [9], [10], [11], such as vector field
clustering or segmentation, do not explicitly simplify the flow
structure. Therefore, we concentrate on only the former.

Vector field topology has been applied successfully to the 2D
vector field simplification problem [4], [6], [12], [13] with the aid
of the notion of topological skeleton [5], [14]. Recently, Morse
decomposition and Morse Connection Graph (MCG) have been
introduced to the visualization community to study the topology
of vector fields [15], [16]. This topological representation (i.e.,
MCG) can facilitate the construction of a hierarchy of the flow
structure by either a refinement process [17] or the merging of
neighboring Morse sets [18]; where the sizes of the Morse sets are
used to determine the ordering of simplification or refinement.

Despite the extensive research on 2D vector field simplification
based on topology, there exists little work on the topology-based
simplification in 3D. This is, at least in part, due to the complexity
of the topology of general 3D vector fields [3], [19] which consists
of not only 1D skeleton but also 2D separation surfaces. This
increased complexity has made the extraction and visualization
of 3D vector field topology challenging [20], [21]. Theisel et
al. introduced the saddle-connector to reduce the occlusion issue
in the visualization of 3D topology [7]. Weinkauf et al. [3],
[8] introduced a technique to visualize high-order critical points.
This is achieved via the F-classification of a derived auxiliary
tangential vector field defined on a closed surface surrounding
each critical point. Iconic visualization can be produced using the
minimal skeleton of this derived vector field. Simplification of
a 3D vector field can be achieved by placing the closed surface
described earlier around a group of first-order critical points.

This is fundamentally different from our approach. While their
method achieves a simplified representation by merging lower-
order critical points into higher-order ones, our approach cancels
pairs of first-order critical points.

Robustness. To introduce hierarchical simplification of vector
fields, one would rank the critical points by measures of relevance
or importance. Kasten et al. [22] ranked features based on their
lifetime in the time-varying setting and treat long-lived ones as
being significant. Reininghaus et al. [23] proposed a persistence-
like importance measure for critical points, which discriminates
between stable and unstable features of the vector field. Klein
et al. [24] tracked vector field critical points over multiple spatial
scales to assess their importance to the overall behavior of the flow
field. In this paper, we use the topological notion of robustness,
a relative of persistence [25], which was introduced through the
algebraic concept of well diagrams in [26], [27], [28], to quantify
the stability of critical points with respect to perturbations, which
is crucial in assessing their significance. It has been shown to
be useful for the analysis and visualization of both stationary
and time-varying 2D vector fields [29], [30]. It also leads to
interesting theoretical results in feature tracking by relating critical
points correspondences with their stability [31]. Recent work in
[32] proposed a 2D vector field simplification strategy based
on robustness, where critical points are canceled according to a
quantitative measure of their stability. Such a strategy provides a
complementary view to topological-skeleton-based simplification
and handles more general boundary configurations. In this paper,
we provide a 3D version of such a strategy, which fills the
gaps of direct cancellation of pair of critical points in 3D vector
fields. Compared to its 2D counterpart, our 3D robustness-based
simplification is technically much more sophisticated and has,
potentially, an even bigger impact on enriching the research field
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of 3D vector field simplification.

3 TECHNICAL BACKGROUND

We provide relevant background in degree theory and robustness.
We give minimal algebraic definitions and offer a high-level
intuition whenever possible.

Our work relies on a corollary of the Poincaré-Hopf theorem,
which states that a compact, connected, oriented manifold M
possesses a nowhere-vanishing vector field if and only if its Euler
characteristic is zero ( [33], page 146). This corollary implies that
given a disk D⊆M⊂ Rm that contains multiple critical points of
f , one could obtain a (homotopic) simplification of f by removing
all the critical points in D while leaving f constant outside of D.
Degrees and indices. Consider f : M→ Rm to be a vector field
on a manifold M (where m = 3 in our context). Suppose x is
an isolated zero (i.e. critical point) of f , that is, let | f (x)| = 0.
Fix the local coordinates near x and pick a closed disk D which
encloses x in its interior and contains no other critical points.
Then the index of x, or equivalently the local degree of f at x,
denoted as deg( f |x), is the degree of the map u : ∂D→ Sm−1

that maps the boundary of D to the (m− 1)-sphere, given by
u(z) = f (z)/| f (z)| (u is sometimes referred to as the Gauss map).
If D is a disk that contains multiple critical points {x1,x2, ...,xn}
of f , then the degree of f restricted to ∂D is the sum of the
indices/degrees of f at the xi, deg( f |∂D) = ∑

n
i=1 deg( f |xi). For

notational convenience, when f is fixed, we abuse notation by
defining deg(D) := deg( f |∂D) and deg(xi) := deg( f |xi), and refer
to them as degrees of D and xi respectively.

We consider isolated, first-order critical points in 3D: sinks,
sources, repelling saddles and attracting saddles. Their indices
(degrees) are +1, -1, +1 and -1 respectively.
Merge tree. Given an m-dimensional continuous vector field f :
M ⊂ Rm → Rm, we define its corresponding magnitude function
f0(x) = || f (x)||2. We use Fr = f−1

0 (−∞,r] to denote its sublevel
set for some r≥ 0. F0 is the set of critical points of f . To compute
robustness of critical points in f , we construct a merge tree of
f0 that tracks the (connected) components of Fr (together with
their degree information) as they appear and merge by increasing
r from 0. A leaf node represents the creation of a component at
a local minima of f0 and an internal node represents the merging
of components, see [29], [34] for algorithmic details. To illustrate
the construction, we show a 2D example adapted from [29] in
Fig. 2. Once the critical points and degrees are computed, the
construction of the merge tree is independent of the dimension,
since it uses only 0-connectivity (connected components) of the
sublevel sets.
Robustness. The robustness of a critical point is the height of
its lowest zero degree ancestor in the merge tree [29], [35]. For
example in Fig. 2, by definition, the critical points x1 and x2 have
robustness r1, x3 and x4 has robustness r3. Such a topological
notion quantifies the stability of a critical point with respect to per-
turbations of the vector fields. The robustness of a critical point is
the minimum amount of perturbation required to cancel it. Its tech-
nical properties are explicitly stated in [29], which we restate here
for completeness. A continuous mapping g is an r-perturbation of
f , if d( f ,g)≤ r, where d( f ,g) = supx∈R2 || f (x)−g(x)||2. Suppose
a critical point x of f has robustness r, then:
Lemma 3.1 (Critical Point Cancellation [29]). Let D be the

connected component of Fr+δ containing x, for an arbitrarily
small δ > 0. Then, there exists an (r+δ )-perturbation h of f ,
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Fig. 2. Figure from [29] showing the merge tree for a 2D vector field
example. The robustness computation and merge tree construction are
the same in all dimensions. Suppose the vector field is continuous,
where sinks are red, sources are green, and saddles are blue. From
left to right: vector fields f , relations among components of Fr, and
the augmented merge tree. f contains four critical points, a sink x1, a
source x3, and two saddles x2 and x4. We use β , γ, ω, etc. to represent
components of the sublevel sets.

such that h−1(0)∩D = /0 and h = f except possibly within the
interior of D.

Lemma 3.2 (Degree Preservation [29]). Let D be the connected
component of Fr−δ containing x, for some 0 < δ < r. For any
ε-perturbation h of f (ε ≤ r−δ ), deg( f |∂D) = deg(h |∂D). If
D contains only one critical point x, deg(h |∂D) = deg( f |x).

Intuitively, if a critical point x has robustness r, then it can be
canceled with a (r + δ )-perturbation, but not with a (r − δ )-
perturbation, for δ > 0 arbitrarily small. By construction, our sim-
plification strategy perturbs the vector field by r+ δ , introducing
the smallest possible (i.e. optimal) point-wise perturbation.

4 ROBUSTNESS-DRIVEN SIMPLIFICATION ALGO-
RITHMS

Suppose we are given a 3D vector field with the critical points
identified along with their local degree information. During
robustness-driven simplification, we first compute the robustness
values of each critical point. For critical points that share the same
robustness value of r, we compute the corresponding component
of the sublevel set with minimum area, D ⊆ Fr, that encloses
them. Due to the inherent properties of robustness, by construction
deg(D) := deg( f |∂D) = 0. We then apply our simplification strat-
egy to simplify f in D while leaving f intact outside of D. It is
important to point out, that although the vector field modification
is local it can have global effects on the flow behavior (Fig. 1).

4.1 Preliminary
Preprocessing: robust critical detection. For simplicial meshes,
the simplest way to detect critical points is solving a linear system
numerically for each tetrahedron to identify if there exists a zero
in its function space. However, the critical points detected this
way suffer greatly from numerical instabilities, often creating false
negatives and/or false positives, especially when the induced linear
system is poorly conditioned. Instead, we employ a numerically
robust approach [36], which uses symbolic perturbations [37] to
eliminate numerical instabilities.
Preprocessing: degree and robustness computation. To com-
pute robustness, we must also compute the local degrees (along
with their relative degree orientations) of the detected critical
points. For simplicity, we refer to the degree of a critical point
p in a tetrahedron t as the degree of t. Suppose there are only
first-order critical point in the vector field, a tetrahedron t (with
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a critical point p in its interior) may only be assigned a degree
of +1 or −1, whereas regions larger than a tetrahedron may have
higher degrees.

Suppose the tetrahedron t is formed by four vertices
{a,b,c,d}, with edges denoted by ab, ac, ad, etc. The orientation
of t(a,b,c,d) is defined as sign(ab · (ac× ad)), this is the mixed
product or determinant of |(ab)(ac)(ad)| and b sees the triangle
acd as counter-clockwise. To compute the degree orientation of a
given tetrahedron t, we examine the orientation of t in R3 as well
as the orientation of f (t). If the orientation of t and f (t) agrees,
then the degree of t is +1; otherwise it is −1. There are two
possible scenarios: (a) if the origin O (i.e., the image of critical
point p in t under f , f (p) = O) is contained in the interior of f (t);
and (b) if the origin O lies on (or near) the boundary of f (t) or
f (t) is degenerate.

Scenario (a) is the generic situation. We compute the sign of
the determinants of t and f (t) directly. Since we use regular tetra-
hedra t in the domain, this ensures that the sign of its determinant
can be correctly determined. Likewise, since the origin is in the
interior of f (t), the sign of its determinant can also be correctly
determined.

In scenario (b), the above approach does not yield reliable
results. Thus, we compute the degree orientation of a larger
neighborhood t ′ such that it encloses the given tetrahedron t. Let
t ′ be the collection of tetrahedra that are adjacent to t, ∂ (t ′) be its
boundary and f (∂ (t)′) be the image of the boundary. Suppose t ′

contains a single critical point in its interior, denoted as p, where
f (p) = O in the image space. We choose a random vector r and
detect the set of triangles T in f (∂ (t)′) that intersect r. Although
the choice of random vector r is arbitrary in theory, we repeat
the procedure with several random vectors in case of potential
degeneracies.

We first determine the relative orientation of each such trian-
gle. Suppose a triangle in T corresponds to a triangle abc in t ′,
we form the first tetrahedron in the domain as t1(a,b,c, p) and
the second one in the image space as t2( f (a), f (b), f (c),O). We
compare the orientation of t1 and t2 – if their signs agree, we say
the contribution of the triangle f (a) f (b) f (c) is +1, otherwise it
is −1. This process is illustrated in Fig. 3 (left). To compute the
degree, we sum the contributions of all the triangles in T . Such
an idea corresponds to a high-dimensional analogue of computing
winding number of a closed curve in the plane around a given
point, as illustrated in Fig. 3 (right), where the winding number
is computed by counting the number of up-crossings and down-
crossings. The local degree computation is implemented using the
CGAL library [38] with exact constructions and predicates.

For both of these techniques, we assume a piecewise linear
(PL) interpolation. The computation of the determinant (scenario
(a)) to detect the sign of the relative orientation requires the
convexity of the tetrahedra. The alternate approach (scenario (b))
similarly requires the convexity of the boundary triangles. A
more general interpolation scheme would rely on subdividing the
triangles and applying PL interpolation to each of the pieces. In
particular, this would only require the subdivision of triangles
which intersect a chosen vector r. Note that this subdivision
approach can detect higher order singularities (e.g. with absolute
degrees larger than 1). Furthermore, although a simple intersection
test is sufficient for our purposes, there is room for improvement.
We could use more advanced tests (e.g. [39]) to robustly detect
intersections between the vector and triangles in image space.

Finally, we compute robustness associated with each critical

point by following the merge tree algorithm described in Section
3 and detailed in [29]. Robustness computation is implemented
using C++ and is roughly linear in the number of tetrahedra.

a

f(b)

b

c

r

p f(a)

f(c)

0

f(p)=0

Fig. 3. Left: mapping between tetrahedra (a,b,c, p) and
( f (a), f (b), f (c),O). Right: computing winding number of a curve,
where winding# = #up-crossings − #down-crossings = 2−1 = 1.

Image space. Given a 3D vector field restricted to a degree-zero
component D ⊂ Fr, f : D→ R3, we define the image space of
D, im(D), by mapping each point p ∈ D to its vector coordinates
f (p) in R3. Intuitively, this is similar to the concept of a Gauss
map except that the vectors are not normalized. Since D ⊆ Fr, it
follows that im(D) is contained within a 3-ball of radius r, denoted
as S3

r , whose boundary is a 2-sphere, denoted as S2
r . Similar to

the 2D case [32], we consider the boundary of im(D) uncovered,
if im(∂D) ⊂ S2

r ; otherwise, as covered. These concepts naturally
extend to the piece-wise linear setting where we consider a vector
field f restricted to a triangulation K of D, f : K → R3 where
the support of K equals D. The above construction then maps a
triangulation K of D to vertices, edges, triangles and tetrahedra
in im(D). An important feature of this approach is that it does
not require the sublevel set component to be simply connected.
Likewise, this implies that the ∂D may not be simply connected
or may even consist of multiple components.

4.2 Algorithm Details
Algorithm overview. Given a zero-degree connected component
D⊆ Fr, our simplification strategy consists of three steps.

(a) We perform Laplacian smoothing on D (i.e. the
Smoothing operation). If the resulting vector field does
not contain critical points, return D1 = Smoothing(D).

(b) We randomly sample points uniformly in S2
r . If among

all the sampled points, there exists a point p such that it
belongs to the uncovered region of S2

r , that is p ∈ (S2
r −

im(∂D)), then with respect to p, we: (i) deform the vector
field in its image space im(D) to remove critical points in
D (i.e. Cut operation); (ii) set D1 = Cut(D), and return
D2 = Smoothing(D1).

(c) If no such point p has been found with sufficient sam-
ples, then we assume the boundary of im(D) is cov-
ered. In this case, we perform Unwrap. We modify the
vector field in its image space im(D) so part of its
boundary becomes uncovered (i.e. Unwrap operation).
We set D1 = Unwrap(D), D2 = Cut(D1), and return
D3 = Smoothing(D2).

The final step (d) is the Restore operation where we set the bound-
ary to its original value. We now describe some key operations in
detail.
Smoothing operation. Given a vector field f and a region D to
be simplified, a modified vector field f inside D can be found
by solving a constrained optimization problem, referred to as
Laplacian smoothing. Specifically, a vector-valued discrete Lapla-
cian equation is solved over D in the domain (e.g., a triangular
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Fig. 4. Cut operation. Left: the projection of tetrahedra that intersect
l, the shaded region represents the uncovered surface of S3

r . Right:
after Cut, the shaded region corresponds to the empty wedge (void)
containing the origin. The resulting vector field is critical point free.

mesh) where the vector values at the boundary vertices of D are
fixed. We employ the equation f (vi) = ∑ j ωi j f (v j), where vi is an
interior vertex and v j are the adjacent vertices that are either in
the interior or on the boundary of D. The weights ωi j are usually
determined using Floater’s mean-value coordinates [40]. This is
a sparse linear system, which can be solved using a conjugate
gradient method [41]. Although this framework typically performs
well in practice, there is no guarantee that a critical point free field
can always be found due to the linear system solver and the spatial
discretization.
Cut operation. Recall that the image space im(D) of a component
D⊆Fr by construction belongs to a 3-ball S3

r . If D contains critical
points, this implies that the center O of S3

r (i.e. the origin) is
part of im(D). The Cut operation then deforms im(D) such that
there is a small void surrounding the origin, which means that
the resulting vector fields restricted to D does not contain any
critical points. The key idea is to perform such a deformation via
a so-called cut point p on the uncovered part of S2

r . Although
a deterministic algorithm exists to locate a valid cut point via
stereographic projection, in practice, uniform random sampling
on S2

r works well in detecting cut points quickly and accurately
as well as being far simpler to implement. Suppose among all the
sampled points, there exists a point p ∈ S2

r − im(∂D).
As illustrated in Figure 4, to deform the vector field, we first

define a line segment l that connects the origin O and the cut
point p. We define a 2D plane k that is orthogonal to l but is
ε away from O. O projects onto k at a point s ∈ k. Next, we
find all tetrahedra in the interior of im(D) that intersect with l
and project their boundary points onto k, whose projections form
triangles in k, e.g. in the domain of the vector field D, vector at
x ∈ K is deformed from vx to vx′ respectively. Third, we locate all
tetrahedra that intersect l and contain one or two boundary points
in im(∂D). For each such tetrahedron, we move its remaining
boundary points to s. Since point p is uncovered, there exists
no triangle that intersects l whose boundary points are all on
the boundary of im(D). This operation creates an empty wedge
around O which ensures that there are no critical points in D
after the modification. By construction, the amount of perturbation
is less than r + ε . This represents the bound on the amount of
perturbation for simplification. Note that Smoothing operation
may increase the amount of perturbation, but it is not strictly
required for simplification.

In practice, the effect on image space through the cut operation
can be seen in Fig. 5 (c-e) (please refer to Section 5 for details on
the datasets). If the boundary is uncovered as in Figure 5 (b),

the internal tetrahedra may be projected to uncover the origin and
hence remove the critical points.

Fig. 5. Top: image space for Synthetic#1 before (a) and after (c) sim-
plification via the cut operation. (b) shows only the boundary triangles,
where the uncovered origin (red sphere) is visible. Since it is visible, the
origin is uncovered and therefore there are no critical points remaining
after simplification in the sublevel set. Bottom: in practice, the image
space may be highly irregular both before and after simplification via the
cut operation. For example, we show the image space for DeltaWing#1
(d) and #2 (e) after the simplification, where the origins (where critical
points used to map to) are visible (therefore uncovered).

Unwrap operation for covered image space. The final scenario
is that when the degree of D is 0, however im(∂D) covers S2

r . The
Cut cannot be directly applied since its corresponding sampling
procedure relies on im(∂D) not covering the entire sphere in the
image space. In this case, the boundary must first be unwrapped
to reveal an uncovered region before the cutting can take place.
In 2D, as shown in [29], this case happens rarely, occurring only
in specially generated datasets. Surprisingly, this situation occurrs
more readily in 3D, appearing in generic synthetic datasets as well
as real-world ones. Intuitively it seems that it would be difficult
to cover the entire sphere with a degree zero map. However, the
increased complexity of the boundary of the component seems to
imply the existence of such instances. In practice, it has occurred
for robust pairs where the corresponding sublevel sets are quite
large and complex (see Synthetic#2 in Section 5.4 for an example).

In this scenario, since no potential cut point can been found,
the simplification would fail at the random sampling stage.
While theoretically the procedure for simplification is dimension-
independent, there are significant obstacles for the unwrapping
step in 3D as opposed to 2D. In 2D, the boundary maps to the
circle S1. Since R is the universal cover of S1, it is possible to
unwrap the image of the boundary, using the parameterization by
the angle (see [29] for details). In 3D, this is not possible, as the
universal cover of S2 is again S2 itself. There exists no mapping
into the Euclidean space R2, from which to determine the unwrap
point. The obvious extension of the 2D case, using two angles
for unwrapping unfortunately does not work. This describes a
mapping into a torus (i.e. T= S1×S1 ) rather than a sphere.

Our approach is an iterative smoothing procedure along a
sphere, peeling back the boundary until a point is uncovered. Then,
we proceed with the remaining steps, i.e. cutting, smoothing and
restoring the boundary. The intuition behind this approach is that
the Hopf degree theorem [33] states that any map f : Sn → Sn is
homotopic to a constant map if and only if it has degree 0. The
degree 0 condition therefore guarantees that we can continuously
deform im(∂D) to a single point. We do not deform im(∂D) all
the way to a point, but until we can find an uncovered region
(therefore leading to a cut point).
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The iterative procedure consists of two steps and is performed
within the space im(∂D) (i.e. the image of the boundary trian-
gles in D). im(∂D) is supposed to cover S2

r , the 2-sphere with
radius r (where r is the robustness value, i.e. the largest vector
magnitude in D). In other words, the underlying space of im(∂D),
|im(∂D)| ⊆ S2

r . The first step is similar to Laplacian smoothing
of im(∂D), in each iteration we set each vertex to the centroid
of its neighbors. Since we take the Euclidean centroid, the vertex
values move off of S2

r over time. Therefore after each iteration,
we renormalize the vertex values to project them back onto S2

r . To
prevent the vertex values from moving too far off the surface of
the sphere, we add a damping term. In each iteration, for each vi,

1. f (vi) = (1−α) f (vi)+α ∑ j ωi j f (v j) where 0 < α ≤ 1, v j
are neighbors of vi and ωi j are convex coefficients as in
Laplacian smoothing.

2. f (vi) =
r

|| f (vi)|| f (vi).

This is equivalent to Laplacian smoothing restricted to the sphere
S2

r . In practice, im(∂D) does not lie perfectly on a sphere. In
some cases, where the vector field changes abruptly or if we are
near the boundary of the domain, the magnitudes of vector field
on the boundary vertices may be quite different (see Fig. 15 left).
Therefore, we initially, and after each iteration, normalize/project
the points on im(∂D) to the sphere S2

r , see Fig. 6 for an illustra-
tion.

f(vj)

f(vk)

f(vi)

r
||f(vi)||f(vi)

Fig. 6. The centroid of a set points on a sphere is not on the sphere
itself. In this case f (vi) is the the centroid of its neighbors f (v j) and
f (vk). Therefore after each iteration we perform normalization of image
space to project the points back onto the sphere.

In our pipeline, the Unwrap operation is combined with the
detection of the cut point to determine the termination condition
for unwrapping. After every k iterations, we perform a search for
a cut point, terminating if successful. We give an example of such
an unwrapping process in Section 5.4.

The method is also guaranteed to converge. This can be seen
by considering the eigenvalues of the discrete averaging operator.
In Euclidean space, it is known that since the eigenvalues are
bounded by 1, repeated iterations converge. Although in our case
we are on a sphere, the argument still holds. The damped version
of the averaging operator still has its eigenvalues bounded by 1
and by taking a small enough step size (the parameter α), it can be
shown that the re-normalization step does not effect convergence
(as these can be modeled by a correction term).
Visualization. Our visualization is built using Java and OpenGL
and runs interactively on a variety of desktop and laptop platforms.
The original vector field is first loaded into the system (including
vectors, vertices, and tetrahedra), then a stencil is placed on top
of only the vectors that are effected by the cancellation. Critical
points are drawn as outlined spheres. They are colored by their
indices, +1, red or −1, blue. The streamlines are rendered as
outlined colored lines. Streamlines are seeded using the vertices
of the sublevel set as the starting locations. Each streamline is
then traced both forward and backward in time until one of
the following conditions is satisfied: (a) hitting the boundary of
the domain (for the study of global/external flow behavior, e.g.
Fig. 1) or the boundary of the sublevel sets (for the study of

local/interior flow behavior); (b) reaching a critical point; and (c)
reaching the maximum number of integration steps. The vector
magnitude is used to color streamlines by applying a rainbow
color map. In some cases, too many streamlines are generated for
a given sublevel set boundary, leading to occlusion. In this case,
we enable the culling of the streamlines based upon a density
measure that computes the average distance of a streamline to
any other streamlines. The optional streamline tracing spheres (see
accompanying video), are outlined spheres that are set to move at a
constant speed in the forward time direction along the streamlines
in order to convey the direction of flow.

5 EXPERIMENTS

We experiment with three datasets: one synthetic dataset and
two simulations from real-world experiments. The first Synthetic
dataset is provided by the authors of [42]. The second one that we
refer to as the Delta Wing dataset is courtesy of Markus Rütten,
DLR Göttingen, Germany. It is an unsteady simulation of a delta
wing configuration for the study of vortex breakdown. In the
simulation, a sharp-edged prismatic delta wing moves at subsonic
speed with the characteristic vortical systems above the wing, and
increasing angle of attack eventually leads to vortex breakdown
[43]. The final dataset is the Lifted Flame dataset. It is a sub-
volume from a direct numerical simulation of a turbulent lifted
ethylene jet flame [44] which results in a compressible and highly
turbulent flow. We describe our critical points cancellation with
static images captured via our software. For a dynamic viewing of
the simplification results in 3D, please refer to our supplemental
video.

5.1 Synthetic Dataset
According to [42], this dataset contains two spirals, two saddles,
and one source. The given mesh contains 132,651 vertices and
750,000 tetrahedra. Our critical point detection has resulted in
ten first-order critical points. The discrepancy may be due to
numerical issues. The augmented merge tree structure (together
with robustness values and degree information) among these
critical points is shown in Fig. 7 (left). We analyze the cancellation
of two groups of critical points here. The first group consists
of two critical points requiring only Cut operation. We refer to
it as Synthetic#1, which has a robustness valued of 13.2. The
second group labeled as Synthetic#2 consists of the remaining
eight critical points with robustness valued at 257.1. They are to
be simplified in a sublevel set that includes all critical points. This
is also the only complex scenario that we encounter that requires
Unwrap operation. We defer its discussion to Section 5.4.

For the pair of critical points in Synthetic#1, Fig. 8 illustrates
the relative location of its enclosing sublevel set (highlighted by
gray transparent surface) with respect to the entire domain from
three different viewing angles. The two critical points (pointed by
the arrows) have opposite degrees, i.e., degree +1 (red ball) and
degree −1 (blue ball). As we increase the threshold of sublevel
set, we see that the originally separated connected components
that contain the two critical points eventually merge with each
other forming an arch-like geometry that encloses the pair.

To investigate the local flow behavior of Synthetic#1 before
and after simplification, we employ streamline culling and focus
on the sublevel set that encloses the pair from the third viewpoint
in Fig. 8. Their corresponding visualizations are provided in
Fig. 9, where we highlight the location of the critical points before
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Fig. 7. Augmented merge trees for Synthetic (left) and Delta Wing (right)
datasets.

Fig. 8. Synthetic#1. Highlighted sublevel set from three different viewing
angles. Critical points to be simplified are pointed by arrows.

simplification (left images). As illustrated in Fig. 9, Synthetic#1
is a typical 3D example of source-saddle cancellation, which is
achieved by reversing the flow directions along the connection
between them (similar to its 2D counterpart). After simplification,
the flow near the original critical points has been slightly altered.
This change is more obvious near the original source (red).
Before simplification, the streamlines are all coming out of it,
while after simplification, the streamlines traverse through it as
illustrated in Fig. 9 (right). This indicates that the source has been
removed and the corresponding flow region is critical-point-free.
In the meantime, the flow away from the two canceled critical
points remains mostly intact. This could be explained by the
inherent characteristics of robustness-based simplification. The
given critical points have relatively low robustness, therefore, the
simplification requires only a small amount of perturbation (i.e.,
upper bounded by their robustness value), and results in vector
field modification that is local to the sublevel set, which is desired
for a topological simplification. The effect on the image space can
also be seen in Fig. 5.

5.2 Delta Wing Dataset

The Delta Wing Dataset has been studied in previous work
[43].The mesh contains 1,889,283 vertices and 3,853,502 tetra-
hedra. We detect eight saddles that form four pairs. The augmented
merge tree structure (together with robustness values and degree
information) among these critical points is shown in Fig. 7(right).
We focus on three pairs of critical points for an in-depth inves-
tigation of the flow behavior before and after simplification. The
cancellation of the last pair involves a very high robustness value
with a sublevel set covering almost the entire domain, thus is
omitted here. The three pairs are labeled as DeltaWing#1, #2 and
#3, with robustness values 20.8, 28.9 and 91.2, respectively.

Fig. 10 illustrates the relative locations of their sublevel sets
(highlighted by those gray transparent surfaces) with respect
to the entire domain. The positioning of these sublevel sets
specifically showcases the hierarchical simplification conducted
at multiple levels of the merge tree. In particular, the sublevel

set of DeltaWing#1 is entirely enclosed by the sublevel set of
DeltaWing#3, forming a nesting configuration. This is also clear
within the merge tree structure of Fig. 7(right).

The simplification results for DeltaWing#1 is shown in Fig. 11.
Both DeltaWing#1 and #2 (omitted here) involve a pair of critical
points located near a vortex core/spiral region, as illustrated by
the circular patterns of the streamlines within the sublevel set.
This is similar to the example in Fig. 1. After simplification,
there exist no critical point in the interior of the spiral region,
leading to a potentially continuous representation of the vortex
core (not shown in here). This is desirable for the subsequent
identification and visualization of vortices. We notice that the
sublevel set modified appears to be long and relatively skinny. This
is a challenging boundary configuration that our simplification
algorithm can handle.

Fig. 12 demonstrates a case for DeltaWing#3 where more than
two critical points could be canceled in a single simplification
process. In this example, four critical points are enclosed within
a single component of the sublevel set that has zero degree. In
addition, two of these points form the previous critical point
pair DeltaWing#2. There are two possible ways to cancel this
group of critical points. On the one hand, we could cancel the
pair #2 first before canceling the other two critical points in a
hierarchical fashion. On the other hand, if we fix a simplification
level, then these four critical points could potentially be cancelled
together. In either case, our method can successfully replace the
flow within the sublevel set region with the one free of critical
points. We wish to point out that the latter group cancellation is
particularly useful for the removal of a cluster of critical points
with small robustness, which typically appear due to noise in
the data or numerical instabilities. As illustrated in the zoomed
views of Fig. 12, the flow before and after simplification has
very minor changes, as illustrated by the similar patterns of their
respective seeded streamlines. This provides another example to
demonstrate that our robustness-based simplification requires only
minimum amount of perturbation (bounded by the robustness) in
order to remove critical points. It is worth mentioning that the
sublevel set that encloses these four critical points has a non-
trivial topology, that is, it contains a tunnel (see Fig. 13). This
is an example where our algorithm could handle domains with
arbitrary boundary configurations, even those that are not simply-
connected. The only requirement on the zero degree domain is
that it should be a manifold with boundary. This can always be
achieved in the PL setting by appropriately thickening the original
sublevel set.

5.3 Lifted Flame Dataset
We have extracted a small sub-volume of the Lifted Flame dataset
for our experiment. The mesh contains 6,000,000 vertices and
35,403,294 tetrahedra. Since the flow field has a strong direc-
tional drift, we further subtract the mean field from the data.
Such subtraction is essentially related to the Galilean invariance,
see [45] for details. We analyze one pair of critical points in
detail for demonstration purpose, it is labels as Flame#1, with a
robustness value 1.4×10−4. Fig. 14 shows the local flow behavior
(restricted to the sublevel set) before and after simplification in the
vicinity of the pair Flame#1. As can be seen, our robustness-based
simplification successfully removes this pair of critical points with
minimal amount of perturbation introduced to the vector field, i.e.,
the streamlines have similar patterns in general before and after
simplification, except near the critical points.
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Fig. 9. Synthetic#1. Local view before (left) and after (right) simplification from the second (top) and third (bottom) viewing angle in Fig. 8. Critical
points to be simplified are pointed by arrows.

Fig. 10. Highlighted sublevel sets from three pairs of critical points to be
simplified. From left to right, DeltaWing#1, #2 and #3 respectively.

Fig. 11. DeltaWing#1 before (left) and after (right) simplification. Critical
points to be simplified are pointed by arrows.

5.4 Discussion on Unwrap Scenario for Synthetic#2

The group of critical points in Synthetic#2 is the only complex
scenario that we encounter that requires Unwrap operation. As
illustrated by the merge tree structure in Fig. 7, the eight critical
points have high robustness values (approximately four times of
the robustness value of the Synthetic#1 pair), thus the sublevel set
that encloses them almost covers the entire domain. Visualizing
streamlines in the domain when all critical points have been

removed does not give much useful information with respect to
the simplification. Instead, in order to prove that our simplification
algorithm involving the Unwrap operation is indeed correct, we
illustrate the image spaces of the corresponding sublevel set before
and after Unwrap in Fig. 15. On the left of Fig. 15, we see that
the boundary covers the origin completely and that the magnitude
of the vector field is very different across the boundary. This is
due to the fact that such a component contains a large portion of
the boundary of the domain. To apply our unwrapping algorithm,
we normalize the vector field to the maximum of the magnitude
(i.e. robustness value). This ensures that there are no points in
the image of the component which are outside the sphere. The
normalized vector field is shown in Fig. 15 (middle). At this stage,
if we rotate the (re-normalized) image space, we see that there
are no uncovered points. Furthermore, Fig. 15 (middle) shows
that it is highly folded over itself with folds and cusps. After
approximately 400 iterations, we obtain Fig. 15 (right), where we
see that the unwrapping is successful (that is, there exists a region
on the surface of the sphere that is uncovered). This implies that
we could successfully locate a cut point within this uncovered
region, and we proceed with the Cut and Restore operations.

6 DISCUSSIONS

Higher-order critical points. Our simplification strategy can
simplify isolated, first-order critical points in 3D vector fields.
If we could detect higher-order critical points in 3D, e.g. using
algorithms developed in [8], [21], in principle, our robustness-
driven simplification strategy could be directly applied to cancel-
ing them. This is due to the fact that our algorithm only requires a
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Fig. 12. DeltaWing#3. Cancellation of four critical points in a single
setting, before (left) and after (right) simplification. The four critical points
to be simplified are pointed by arrows.

Fig. 13. DeltaWing#3. Sublevel set surrounding the four critical points
(pointed by arrows) has non-trivial topology, e.g., it contains a tunnel.

zero-degree component in the sublevel sets and is oblivious to the
degrees of individual critical points.

There may arise some situations where we may want to
cancel particular sets of critical points. For example, in Synthetic
dataset, we have a component of maximum degree of +3 at
38.2 < r < 64.0 (Fig. 7 left). At r = 64.0, the component drops
to a degree of 2. We may choose to cancel the −1 degree critical
point with any of the three +1 degree critical points. Although
there is no canonical choice of which critical point to cancel with,
there certainly exists a connected component in the domain which
contains the −1 degree point and one of the +1 degree points.
Applying the algorithm on this subset would cancel this pair.

Fig. 14. Flame#1. Local flow behavior in the interior of the sublevel set
before (left) and after (right) simplification.

Fig. 15. The image space for Synthetic#2. On the left, we have the
original image space, in the middle the normalized image space and
on the right, the unwrapped image space. After Unwrap, we locate
an uncovered region within the unwrapped image space on the right,
and standard Cut operation is then performed followed by restoring the
boundary.

Vortex and vortex core structure. Vortices are important flow
structures that are not part of the vector field topology [46],
[47], [48], [49]. However, there does not exist a unified definition
of vortices. Existing vortex core detection techniques are also
sensitive to small perturbation or noise in the data, leading to
many small and disconnected segments as well as excessively
complex vortex core structure. This prevents the identification of
the salient behaviors of these vortices. Simplifying this vortex core
structure by removing the smaller vortices can help alleviate this
issue. However, there exists little work on the simplification of
vortex core structure. Our robustness-based simplification can help
achieve this goal to some extent. In the case of incompressible
turbulent flow, we have seen a number of critical points near
vortex cores (Fig. 1 and Fig. 11). The existence of these critical
points partially contributes to the early termination of the tracing
of vortex cores. Removing them with small amount of pertur-
bation locally using our method can improve the continuity of
the detected vortex cores and simplify the corresponding vortex
core structure, while preserving the vortex behavior at the same
time. Nonetheless, it will be interesting to extend the presented
framework for the direct simplification of vortex core structure,
which we plan to investigate in our future work.
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[13] H. Theisel, C. Rössl, and H.-P. Seidel, “Combining topological simpli-
fication and topology preserving compression for 2D vector fields,” in
Pacific Graphics, 2003, pp. 419–423.

[14] J. Helman and L. Hesselink, “Representation and display of vector field
topology in fluid flow data sets,” IEEE Computer, vol. 22, no. 8, pp.
27–36, 1989.

[15] G. Chen, K. Mischaikow, R. Laramee, and E. Zhang, “Efficient Morse
decompositions of vector fields,” IEEE TVCG, vol. 14, no. 4, pp. 848–
862, 2008.

[16] A. Szymczak and E. Zhang, “Robust morse decompositions of piecewise
constant vector fields,” IEEE TVCG, vol. 18, no. 6, pp. 938–951, 2012.

[17] G. Chen, Q. Deng, A. Szymczak, R. Laramee, and E. Zhang, “Morse
set classification and hierarchical refinement using Conley index,” IEEE
TVCG, vol. 18, no. 5, pp. 767–782, 2012.

[18] L. Sipeki and A. Szymczak, “Simplification of Morse decompositions
using morse set mergers,” in Topo-In-Vis 2013, 2013.

[19] A. Globus, C. Levit, and T. Lasinski, “A tool for visualizing the topology
of 3-dimensional vector fields,” in IEEE Vis, 1991, pp. 33–40.
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