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Abstract Multiperspective images (MPIs) show more
than what is visible from a single viewpoint and are a

promising approach for alleviating the problem of oc-

clusions. We present a comprehensive user study that

investigates the effectiveness of MPIs for 3-D scene ex-

ploration. A total of 47 subjects performed searching,
counting, and spatial orientation tasks using both con-

ventional and multiperspective images. We use a flexi-

ble MPI framework that allows trading off disocclusion

power for image simplicity. The framework also allows
rendering MPI images at interactive rates, which en-

ables investigating interactive navigation and dynamic

3-D scenes. The results of our experiments show that

MPIs can greatly outperform conventional images. For

searching, subjects performed on average 28% faster us-
ing an MPI. For counting, accuracy was on average 91%

using MPIs as compared to 42% for conventional im-

ages.
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1 Introduction

As dataset complexity continues to increase, the visual

interface between users and computers is called upon

to convey increasing amounts of information. However,

when a 3-D dataset is projected to screen, data sub-
sets of potential interest are hidden due to occlusions.

Occlusions are a fundamental problem in 3-D data visu-

alization because they increase the complexity of tasks

such as finding and tracking data subsets, or identifying
connections between data subsets that are not simulta-

neously visible.

One approach for alleviating occlusions is to offer
the user the ability to change the view interactively.

Such sequential exploration of a 3-D dataset can be in-

efficient. The user has to navigate the virtual camera

around occluders to explore the hidden data subsets;
when the newly discovered data subset turns out to

be of no interest, the navigation path has to be re-

traced. The disadvantages of sequential exploration are

exacerbated in the case of dynamic datasets where the

phenomenon of interest could be transient and its vi-
sual saliency could decay before the user reaches it.

Another challenge is identifying connections between

distant data subsets. Such subsets cannot be imaged

simultaneously and any potential connection between
them is likely to be missed during sequential naviga-

tion.

A second approach for alleviating occlusions is to
provide the user with multiple views arranged in a 2-D

matrix on the screen. The approach alleviates the chal-

lenges posed by sequential exploration: no navigation

is needed and more of the data is shown at any given
time. However, such a multiview interface suffers from

visualization discontinuity across the borders of indi-

vidual images. The user cannot easily monitor all the
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Fig. 1 The PPC (left) does not show the side corridor while
the GC (right) reveals the hidden object.

images in parallel and has to examine each image in

turn, painstakingly adapting to each one of the multi-

tude of contexts. Dynamic objects move erratically on

screen jumping from one view to another. Moreover,

achieving comprehensive coverage can require an im-
practical number of views and conforming to a limited

budget of views implies that some of the data is not

imaged.

A third approach for alleviating occlusions is to en-

hance the image such that it shows more than what is

visible from a single viewpoint. Such an image shows
occluded data subsets without resorting to navigation

or multiple views. One option is to render occluding

data subsets transparently or to cut away parts of the

occluding data subsets. An important advantage is that

spatial relationships are preserved: each data subset is
imaged where it would be seen in the absence of the

occluding subsets. However, transparency and cutaway

techniques have difficulty scaling with an increasing

number of occluding layers, and many layers are only
represented summarily. A second option is to perturb

spatial relationships either in the 3-D dataset (1) or

in the image (2) in order to break the alignment be-

tween occluding and occluded datasets. (1) Spatial dis-

tortion techniques take the approach of altering the 3-D
dataset such that when projected onto the image plane,

important data subsets map to disjoint image locations

and occlusions are avoided. (2) Multiperspective image

(MPI) techniques alter the camera model used to com-
pute the image such that all subsets of interest are visi-

ble. Distortion techniques have the advantage of scaling

well with the number of occluding layers and of repre-

senting all layers equitably. This comes at the cost of

perturbing spatial relationships.

MPI techniques allow specifying the exact desired

disocclusion effect directly in the image. However sev-
eral important challenges have so far prevented MPI

techniques from being incorporated into mainstream vi-

sual interfaces. Challenges include achieving sufficient

flexibility to disocclude complex and dynamic datasets,

achieving sufficient rendering performance for interac-

tive visualization, and minimizing distortions. The graph

camera [32] is a recently developed MPI framework that

addresses most technical challenges associated with MPI.
The graph camera is literally a graph of conventional

planar pinhole camera (PPC) images. Construction starts

from an initial PPC whose frustum undergoes a series

of bending, splitting, and merging operations. The re-
sult is a flexible camera model with piece-wise linear

rays that reach deep into the dataset, avoiding occlud-

ers and sampling multiple or all data subsets of interest.

Due to the availability of a fast projection operation,

graph camera images of complex 3-D datasets can be
rendered at interactive rates. The graph camera inte-

grates multiple conventional PPC images into a single

image which is free of local distortions.

In this paper we describe an extensive user study
conducted to investigate and quantify the potential ben-

efits of the graph camera MPI framework in the context

of 3-D scene exploration. Our study was conducted us-

ing 47 subjects whose accuracy and speed were tested

for a number of tasks related to 3-D scene exploration.
In one type of task subjects were asked to explore a

maze to find stationary or moving objects by navigat-

ing a PPC or a graph camera (GC), see Figure 1. The

graph camera image aims to improve performance by
previewing lateral corridors.

The second type of task asked subjects to count ob-

jects in a maze using a 4x4 matrix of PPC images or a

single graph camera image. In Figure 2 the GC image

samples the maze non-redundantly which simplifies the
counting task in the presence of identical objects. For

example, 4 PPC images show a purple-red-white object

(i.e. 1, 3, 9, and 15), while there are only 2 such objects

in the maze, which requires substantial cognitive effort
to disambiguate objects through spatial reasoning. The

GC image shifts the cognitive effort to a simple visual

inventorying of the non-redundant image.

The third type of tasks tested how much the addi-

tional viewpoints integrated by graph camera images
such as that in Figure 1 affect subjects understanding

of orientation. The subjects first watched an animation

constructed from graph camera or PPC rendered along

a random path. Then, they were asked to identify the

corresponding path on a map. We also refer the reader
to the video accompanying the paper.

The results of the user study indicate that the disoc-

clusion capability of graph camera images is beneficial

to users when performing basic tasks in the context of
3-D scene exploration. By using a graph camera image,

subjects were able to locate objects on average 27.8%

faster compared to using a PPC. When counting ob-
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jects, using GC images resulted in an accuracy of 91.3%

compared to only 42.0% when using a matrix of PPC

images. For the orientation task, subjects performed

virtually identically with accuracy of 66.7% and 69.8%

for PPC and GC images, respectively.

To the best of our knowledge, this is the first user
study investigating the potential benefits of multiper-

spective visual interfaces in scene exploration. The graph

camera framework has the advantage of allowing chang-

ing the amount of disocclusion achieved by stopping the

recursive construction after a desired number of lev-
els. This enables investigating the benefits of MPI on

a continuum from a single perspective and intensive

navigation to a large number of perspectives sufficient

to capture the entire 3-D dataset in a single image by-
passing navigation altogether. In Figure 1, the recursive

construction was stopped at the second level. This al-

lows the user to see beyond the first corners, but seeing

farther requires navigation. In Figure 2 the recursive

construction continued until the entire maze was cap-
tured, eliminating the need for navigation altogether.

2 Prior Work

We review the state-of-the-art in navigation, multiper-

spective rendering, and visualization.

2.1 Navigation

Our study compares user performance using single per-

spective and multiperspective views given the same nav-

igation controls for each. Although our study does specif-

ically compare different navigation techniques, we re-
view prior work in navigation for completeness.

Unconstrained 6 degree-of-freedom 3-D navigation

is difficult for users to master. Constraining navigation

[2,15,18] is the approach most frequently used to im-

prove a users navigation experience. In addition to re-

ducing the number of degrees of freedom that the user
can manipulate, this also includes keeping a safe dis-

tance from objects for the purpose of having the cam-

era at a natural height for architectural navigation [40],

avoiding collisions [16], or simply hovering [21] at a con-
stant distance for object inspection. Simplified point-

and-click controls [17,23] or gesture-based controls [30,

38] are also effective at improving the users navigation

experience.

The speed of camera navigation is another concern.

A number of systems [28,41] have addressed the prob-
lem of navigation in scenes with multiple scales. Here,

fast and smooth transitions between environments rang-

ing from the size of the Earth down to a single room

Fig. 2 A matrix of PPC images (top) and a graph camera
image (bottom) both capturing the entire maze.

or even to a microscopic level are desired. Identifying
a path, or wayfinding, through unfamiliar 3-D envi-

ronment is a challenging task, facilitated by employing

tools such as maps and signs [10]. Providing additional

context through proxies and tethers that link maps with
ground level views can also improve subject navigation

performance [31]. Visit Wear [39] addresses the prob-

lem of revisitation (i.e. following a path already visited)

by adding a history mechanism to fisheye views using a

distortion-based technique. It showed that performance
can be improved by shifting cognitive tasks: the task of

remembering a path was changed to one of visual search

for path components. The lack of previewing capability

makes this technique less effective for other tasks like
searching and counting.

2.2 Multiperspective Rendering

There exist a number of systems for compositing PPC

images. Multiperspective collages [1] take images of ob-
jects with different viewpoints and paste them into a

single multiperspective image. The images generated

have poor correlation to 3-D space making navigation

impossible. Video cubes [22] provide the potential for
generating multiperspective images by allowing arbi-

trary slices through a stack of PPC images, but navi-

gation is limited to the prerecorded video path. Meth-
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ods also exist which produce multiperspective images

by distorting the view space [7] or allow for an artist

to design flexible camera models [4,8] which can com-

bine perspective, orthographic, and non-linear projec-

tion techniques.

The occlusion camera [29] is a PPC enhanced with

rays that reach around occluders to capture barely hid-

den samples. A barely hidden sample is not visible from

the reference viewpoint but visible from a nearby view-
point. The general linear camera [43,44] is constructed

by interpolating three non-concurrent rays. Occlusion

and general linear cameras only provide a local disoc-

clusion effect and cannot produce comprehensive im-

ages of complex 3-D datasets.

Multiple center of projection (MCOP) images [34]

sample scenes with a pushbroom camera that slides

along a user selected path around a scene. The resulting

image provides a continuous transition between many
viewpoints. A similar approach has been used in creat-

ing multiperspective panoramas for cel animation [42].

Street panoramas [36,37] were created for photograph-

ing urban landscapes by sliding a vertical pushbroom or

crossed-slit camera down a street to capture the faades.
All these techniques offer good disocclusion capabil-

ity. However, rendering the multiperspective image en-

tails rendering from each viewpoint along the underly-

ing camera path, which precludes interactive navigation
and dynamic datasets.

Work flow visualization tools provide multiview in-

terfaces for 3-D data set exploration. Some systems pro-

vide mechanisms to review navigation and visualization

tasks in a serialized pattern through undo and redo
mechanisms [24]. Other systems allow branching of par-

allel tasks allowing multiple views with variable visu-

alization parameters simultaneously [3,35]. Like tradi-

tional spreadsheets, multiview spreadsheets [20,25] are
tabular and can be treated like flipbooks, but they can

also be moved, rotated, or scaled. These interfaces can

provide a wide variety of views simultaneously, but suf-

fer from a poor integration of individual views.

Fig. 3 Graph Camera operations: bend (left), split (middle),
and merge (right).

Fig. 4 The PPC (top) only samples along the magenta path
(right). The portal-based MPI (bottom) samples along the
magenta path plus the blue paths down the adjacent corri-
dors.

2.3 Visualization

Several visualization techniques attempt to overcome

the occlusion limitation. For a comprehensive review of
the state-of-the-art, we refer the reader to a taxonomy

of over 50 occlusion management techniques [14].

Transparency techniques have the advantage of re-
vealing hidden data subsets while still showing a com-

plete model [12,19]. However, the approach scales poorly

with the number of occluding layers. Cutaway tech-

niques address this limitation by simply removing parts
of the outer layers [6,13,27]. This comes at the cost of

representing outer layers only summarily, at the periph-

ery of the image.

An alternative is to distort the 3-D dataset such that

subsets of interest become visible to the user. Deforma-

tion techniques [11,33] preserve the original topology

of the dataset, whereas explosion techniques [5,26] do

not. Deformation techniques are suitable when there ex-
ists adequate access to the occluded subset. Explosion

techniques are typically used when the subset of inter-

est is completely contained in the occluding subset (e.g.

an engine inside the hood of a car). Dataset distortion
techniques attempt to achieve the desired disocclusion

effect indirectly: the dataset is first distorted and the

disocclusion effects are then evaluated by rendering the

distorted dataset with a conventional camera.

Multiperspective imaging techniques have the ad-

vantage of allowing the design of disocclusion effects di-



An Evaluation of an MPI Framework 5

Fig. 5 Left: the layout for graph camera image in Figure
2, bottom. Right: placement of planar pinhole cameras for
matrix of images in Figure 2, top.

rectly through modifications to the camera model gov-

erning image computation. Previous MPI techniques ei-

ther lacked in disocclusion capability or in rendering
performance. The graph camera [32] is a recently de-

veloped MPI framework that combines rendering per-

formance with disocclusion flexibility. We employ the

graph camera MPI framework, so we summarize it here

for completeness.

3 Graph Camera

The graph camera (GC) generalizes the concept of a

camera ray to the locus of 3-D points that project at

a given image plane location, which allows for rays

that are not a straight line. This flexibility is lever-

aged through three basic construction operations (Fig-
ure 3) that are applied recursively to an initial PPC

frustum. The resulting graph camera is a graph of PPC

frusta. The GC provides a closed-form projection for

each of its PPC sub-frusta, which maps a 3-D point in-
side the sub-frustum directly to the output GC image.

This allows for efficient rendering through projection

followed by rasterization, with graphics hardware sup-

port. The resulting GC images are non-redundant and

C0-continuous.

Two GC construction methods are used in this study.

The portal-based constructor starts from a PPC and

performs bending operations to send rays down transver-
sal hallways of a maze (Figure 4). The rays are routed

through the hallway entrances (i.e. portals) visible in

the root PPC. In order to facilitate a smooth transition

between hallways, the portal frusta are collapsed as the

user approaches them. New frusta are deployed as the
user enters a hallway.

The other construction method we used produces a

comprehensive GC that captures the entire scene into
a single image. Figure 2, bottom, shows the compre-

hensive GC image and the regions it samples. Figure

5, left, shows the regions sampled by the comprehen-

sive GC image. The construction is a recursive method

which begins from a pre-selected location (S in this ex-

ample) and searches the scene in breadth first order.

At turns, the GC simply bends around the corner. At

3-way intersections, the frustum is split into 2 outgoing
directions. At 4-way intersections, the frustum is split

into 3 outgoing directions. If the GC reaches a region

which has already been visited, the construction along

that branch terminates.

4 Experiments

We have conducted a user study to investigate and

quantify the potential benefits of multiperspective im-

ages in 3-D scene exploration. A subject was asked to

perform 3 types of tasks for each testing session.

4.1 Object Finding

The first task was to explore a maze (Figure 6, right)

in order to find an object (Figure 6, left). The subjects

searched for the object by navigating through the maze

using a conventional planar pinhole camera or a portal-

based graph camera (Figure 4). For both visualization
conditions, navigation was restricted to 3 degrees of

freedom: forward/backward and left/right translations

controlled with the keyboard, and left/right panning

controlled with the mouse. Starting from location S,
the subject was asked to locate and click on the object

as quickly as possible. Before the experiment, subjects

were shown slides that illustrated the navigation con-

trols, the object to be found, as well as a conventional

PPC image and a corresponding portal-based GC im-
age, like the ones shown in Figure 4.

To test our hypothesis that searching with the GC

would decrease the search time, we conducted two se-

ries of tests. Time, the dependent variable, was mea-
sured for each trial. For the first series two independent

Fig. 6 Object searched for (left) and possible object loca-
tions in the 3-D scene (right).
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variable were used. The first was the viewing condition

which alternated between PPC and GC between tests.

The second was the object location within the maze.

For each test, the object was placed at one of 12 loca-

tions that cover the entire maze (Figure 6). The order
for object placement was preplanned and identical for

all tests. For the second series an additional indepen-

dent variable was added. Here, the position object was

dynamic. For each test, the object started at one of
the first 8 locations shown in Figure 6 and then moved

through the maze, making random turns at intersec-

tions.

4.2 Object Counting

The second task was to count objects in a 3-D maze us-

ing two forms of comprehensive visualization: a 4x4 ma-

trix of conventional PPC images and a comprehensive
GC image (Figure 2). Since both visualizations show

the entire maze, no navigation is needed. The GC was

constructed automatically starting from S and covering

the maze recursively until the terminal locations 1-6

were reached. The viewing locations for the matrix of
PPCs were chosen by hand to cover the maze environ-

ment in its entirety while minimizing overlap (Figure 5).

The arrangement of the individual PPC images within

the matrix was chosen to keep the views with similar
locations as close together as possible, to minimize how

far a moving object jumps as it leaves one PPC frustum

and enters another. Before the experiment, the subjects

were shown a single slide with an example of a compre-

hensive GC image and matrix of PPC images, like those
in Figure 2.

To test our hypothesis that the GC would increase
counting accuracy, we once again conducted two se-

ries of tests. The first series of tests used four inde-

pendent variables. The first variable was the number

of objects which was randomly selected to be between

4 and 7. The position of the objects was also variable

Fig. 7 Selection interface of the path matching experiment.

and selected at random. The next variable was object

color: objects could either be completely unique in color

combinations or have duplicate combinations. The final

variable was the time alloted to count the objects. Sub-

jects were given 5, 10, or 20 seconds to complete their
count. The second series of tests had the same indepen-

dent variables as the first, with the addition of dynamic

object motion. For this series, objects were allowed to

move randomly throughout the maze.

4.3 Path Matching

The third task asked subjects to recall a path through
the maze after watching an animation rendered with a

PPC or with a portal-based GC. Our hypothesis in this

case was that the distortions of the GC would not af-

fect a subject’s most basic spatial understanding – the
ability to identify left and right turns. We tested two

independent variables in these experiments. The first

was the viewing condition, the same as for the object

finding task (Figure 4), were alternated between the

PPC and GC. The second was the path which was gen-
erated randomly to have 5 turns. After watching the

animation, the subjects were asked to identify the path

they had just seen among 3 paths: the correct path and

2 randomly generated incorrect ones. Subject selection
accuracy was recorded. The paths were shown with 2-D

diagrams (Figure 7). To explain the task, the subjects

were shown a sample path played back and its corre-

sponding diagram before the experiment began.

4.4 Testing and Subject Pool

A testing session was designed to lasted up to 1 hour.
The first series of tests subjects would perform were ob-

ject finding. Each subject was asked to perform total of

40 tests (24 stationary object, 16 moving objects; 50/50

split between PPC and GC). Next, the subjects would

perform 40 object counting tasks with equal distribu-
tion between moving objects and stationary objects and

the two viewing condition. Finally, the subjects per-

formed 10 path matching tasks with even distribution

between PPC and GC viewing conditions.

We had a total of 47 subjects participate in test-

ing. Subjects had the option of participating in 1 or
3 sessions. There was a minimum of 1 night between

two consecutive testing sessions of the same subject,

and a maximum of 3 days. The subjects were between

18 and 38 years of age; 10 were female and 37 were
male. Subjects were recruited from our research lab

and from computer science and computer technology

courses. The subjects self-reported their level of 3-D
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navigation experience ranging from none to very high,

though the majority, 33, reported their level as high or

very high. Of the 47 total subjects, single session results

are reported for 45 subjects. One subject suffers from a

visual impairment which would possibly affect the test-
ing results. Another subject became motion sick about

10 minutes into the experiment. The motion sickness

was not due specifically to either the PPC or GC visu-

alization, but the motion of the visualization in general.
Multiple session results are reported for the 25 subjects

who chose to participate in 3 sessions. Subjects were

not financially compensated for their time. Students re-

cruited from courses were offered extra credit. All test-

ing was performed in accordance with the policies of
our Institutional Review Board.

All of our experiments were performed on comput-

ers with minimum configurations of Intel Xeon 2.4 GHz

processors, 4 GB RAM, and nVidia GeForce 280 GTX
graphics cards. All experiments used 24” LCD moni-

tors with 1920 x 1200 resolution. The PPC and GC are

both capable of rendering the maze scene at hundreds

of frames per second, but we enabled vertical sync for

a refresh rate of 60 Hz.

5 Results and Discussion

5.1 Object Finding

5.1.1 First Testing Session

The first series of tests consisted of finding a stationary

object placed at one of 12 locations (Figure 6, right), for
the PPC and portal-based GC visualization conditions.

The average times for finding the object are shown in

Figure 8, top. The GC outperforms the PPC for al-

most all cases. On average, object finding times were

20.4s with the PPC and 13.3s with the GC, an im-
provement of 34.8%. Among the 45 subjects counted,

42 performed better with the GC as opposed to the

PPC. 36 performed at least 20% faster.

Performance improved by as much as 90.7% for ob-
ject location #3. This was a particularly easy case for

the GC. The extra perspective of the portal-based GC

made the object visible from the initial viewpoint and

view direction, so the object was found with almost no

navigation.
Location #8 was the only case when the PPC out-

performed the GC. Figure 9, left, shows that the PPC

image reveals the object by chance as the user travels

North and approaches location #6. The GC reveals the
entire lateral hallway, but not the object, which is not

one, but two intersections away from the current user

location. Such a case where the PPC reveals an object
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Fig. 8 Box plot of user performance finding stationary ob-
jects (top) and dynamic objects (bottom). For objects at each
position, the PPC result is the left plot and the GC is the right
plot. Outliers (trials lasting longer than 60 seconds) for each
object position are marked at the top.

and the GC does not is rare. The GC disoccludes a

large area of the maze at the cost of occluding a small

region where the object is less likely to be located.

For each of the PPC and GC conditions there were

exactly 32 cases (6.3%) of time expiring. Many outliers

existed for object location #2 (7 PPC and 17 GC).

This is most likely due to the location being difficult

to reach from the starting location S since the natural
tendency is to first travel north the entire length of

the initial corridor. A large number of outliers (13 PPC

and 13 GC) were concentrated between only 2 subjects.

Outliers were removed from all results reported in this
paper.

For the second series of tests the objects started

at the first 8 object locations from Figure 6 and then

moved about the maze randomly. The results are shown
in Figure 8, bottom. In all, subjects found the object

Fig. 9 Rare case when object is visible in PPC image (left)
and not visible in portal-based GC image (right).
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Stationary Objects Moving Objects
PPC GC PPC GC

Session #1 19.7 s 12.9 s 11.6 s 8.6 s
Session #2 15.7 s 10.9 s 10.8 s 8.5 s
Session #3 14.3 s 9.2 s 9.0 s 8.2 s

Table 1 Average time to find objects for subjects partici-
pating in 3 testing sessions.

in an average of 12.6 seconds with the PPC and 9.1

seconds with the GC for a speedup of 27.8%. In total,

the PPC had 7 (1.90%) outliers (time expired) while

the GC only had 1 outlier (0.27%). We could identify
no correlation between the subjects or object locations

which produced these outliers.

5.1.2 Multiple Sessions

25 of the 47 subjects participated in 3 sessions. The av-

erage times per session are reported in Table 1, left. For
the stationary objects series, subjects performance im-

proved virtually in stride for both GC and PPC. The

GC outperformed the PPC on average 34.8%, 30.6%,

and 35.4% for sessions 1, 2, and 3, respectively. For the
moving objects series GC performance is superior to

PPC performance for all sessions. GC session to ses-

sion improvement does not outpace PPC improvement

for either series, which indicates that GC benefits are

not contingent upon user familiarity with the novel type
of image. The improved performance at object find-

ing brought by the GC over the PPC are due to the

GC being enhanced with additional viewpoints, which

makes the search more efficient. The preview of up-
coming regions reduces the navigation required for an

exhaustive search by early elimination of empty dead-

end hallways. The GC allows the subject to see one

intersection ahead.

5.2 Object Counting

5.2.1 First Testing Session

Subjects counted stationary objects correctly 90.2% of

the time using the comprehensive GC image, and only

43.6% of the time using the matrix of PPC images.

For moving objects, the results showed an accuracy of

92.4% for the GC and only of 40.4% for the PPC. Us-
ing the PPC performance as the null hypothesis showed

statically significance in the result (p-value < 0.001) for

both stationary and moving objects. Table 2, left, shows

that subjects counted stationary objects with good per-
formance even when exposure time was 5 seconds; PPC

performance increases with exposure time but remains

much lower than GC performance. Table 2, right, shows

that counting accuracy is consistently higher for the

GC, regardless of the number of objects, and that per-

formance degrades faster for the PPC with the number

of objects.

5.2.2 Multiple Sessions

Table 3, right, shows performance over multiple ses-

sions. GC performance becomes nearly perfect in the

second session. PPC performance continues to improve
from the second to the third session, but at a slower

pace, and remains substantially below GC performance.

Our results show that comprehensive GC visual-

ization outperforms PPC matrix visualization for the

counting task. We see 4 main features of the GC which
contribute to this result. (1) The GC image is non-

redundant removing the need for any disambiguation.

(2) The GC image is continuous which simplifies vi-

sually tracking moving objects. (3) The layout of the
comprehensive GC image is natural for counting. The

layout allows the subject to simply read the image left

to right counting along the way. (4) The more efficient

usage of screen space (from the lack of redundancy) re-

sults in objects with large screen footprints. This might
make objects easier to find and identify.

5.3 Path Matching

When shown a PPC animation subjects correctly iden-
tified the path followed in the animation 66.7% of times,

compared to 69.8% of times when the animation was

rendered with a portal-based GC. Using the PPC per-

formance as our null hypothesis, the GC was shown

to perform identically (p-value 0.035). All paths had
five 90 turns. Using only subjects who participated in

3 sessions, PPC performance was 60.8%, 72.0%, and

78.4% for sessions 1, 2, and 3, respectively; the perfor-

mance for GC was 64.0%, 73.6%, and 76.0% (p-values
0.055, 0.073, and 0.071). The similar performance num-

bers indicate that the additional viewpoints integrated

into the GC image do not disturb the users ability to

detect and count turns and to a lesser extent, estimate

the distance traveled in a straight line.

5 s. 20 s. 4 obj. 5 obj. 7 obj.
PPC 41.3% 56.5% 65.8% 49.0% 41.1%
GC 84.7% 90.8% 98.9% 94.4% 82.5%

Table 2 Accuracy counting stationary objects for different
exposure times (left) and number of objects (right). All re-
sults showed statistical significance (p-value < 0.001) with
the PPC performance as the null hypothesis.
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Stationary Objects Moving Objects
PPC GC PPC GC

Session #1 38.8% 89.6% 39.6% 90.8%
Session #2 50.4% 98.4% 46.0% 98.0%
Session #3 58.4% 98.4% 47.6% 95.6%

Table 3 Accuracy in counting objects for subjects partici-
pating in 3 testing sessions. All results showed statistical sig-
nificance (p-value < 0.001) with the PPC performance as the
null hypothesis.

5.4 Subject Survey

At the conclusion of testing, subjects were surveyed for

their opinion on whether the PPC or GC was easier

to use for the tasks described. They were asked to re-
spond on a scale of 1 to 5, with the PPC marked as 1,

the GC marked as 5, and 3 marked as about the same.

The results of the survey align well with the perfor-

mance numbers collected. For object finding, the aver-
age response was 4.5, making GC the strongly preferred

method. For object counting, the average was 4.98 (1

subject selected 4, all others selected 5) making GC

the clear standout. The results for the path matching

were more balanced but slightly favoring the PPC at
2.7 probably indicating a higher comfort level with the

familiar PPC images.

6 Conclusions and Future Work

Our study shows that a visualization which integrate

multiple viewpoints into continuous and non-redundant

images can bring substantial benefits in the context of

certain tasks. Even though multiperspective images are
different from the images acquired by the human vi-

sual system, benefits were recorded from the beginning,

without any training.

We have presented a first study of the effectiveness
of MPI visualization that was conducted, as it should

have, at a fundamental level, in the context of basic user

tasks performed in an abstract maze. The maze serves

as a versatile test-bed where occlusion complexity can

be controlled and its effects can be investigated, and not
as an exact replica of a real-world scenario. Whereas one

could easily count the objects in our maze from an over-

head view, the more important point is that the maze

allows investigating scenarios where such a view is not
available or not known, or where disambiguation of ob-

jects of interest cannot be done from an overhead view

but rather requires viewing the objects transversally.

Future work will build upon these first results to
investigate MPI benefits in the context of actual appli-

cations in domains such as security, situational aware-

ness, and scientific visualization (e.g. visualization of a

finite element analysis of building response under earth-

quake load in structural engineering where one has to

see multiple structural columns simultaneously). These

more complex 3-D datasets are supported by the MPI

framework as GC construction is not limited to rectan-
gular shaped portals and straight corridors, but instead

it can support irregular shaped occluders and curved

corridors and spaces [9] in both virtual and real-world

environments.
MPI techniques, including the GC, work by map-

ping occluded data subsets to disjoint image locations

and thus they scale well with occlusion complexity as

long as there is sufficient screen real estate to visualize

the visible and occluded data subsets simultaneously at
adequate resolution. As the complexity of the dataset

and therefore of the GC image increase, another possi-

ble bottleneck that needs to be investigated and quan-

tified is the user’s limited ability to assimilate visual
information in parallel. A comprehensive visualization

is only useful if the user can benefit of the entire image

at once. Another possibility is to use the MPI image as a

panorama examined sequentially, by navigating within

the image as opposed to within the 3-D dataset itself,
akin to the panoramas used in cel rendering [42].

Combining MPI with other techniques, such as trans-

parency, presents another avenue of future study. Trans-

parency can be valuable for occlusions where no direct
access is available to occluded components, an engine

for example. Combining this power with the GC’s abil-

ity to address larger-scale occlusion would further im-

prove the comprehensiveness of images.

MPI overcomes occlusions by introducing distortions.
The perceptual effect of such distortions is a significant

unknown that we have only begun to explore. For tasks

where a global spatial understanding of the 3-D dataset

is required, no MPI approach may ever be acceptable.
For other tasks MPI visualization might be clearly pre-

ferred. One of the advantages of the graph camera MPI

framework employed in this study is its flexibility. We

do not advocate for a specific type of MPI visualization.

Instead, we advocate for camera model design, a visual-
ization paradigm that abandons the traditional rigidity

of the camera model in favor of designing the camera

according to the application needs, and optimizing it

dynamically according to the dataset and current user
location.
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