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ABSTRACT 

Rosen, Paul Andrew. Ph.D., Purdue University, August, 2010.  Improved 3-D 
Scene Sampling by Camera Model Design.  Major Professors:  Voicu Popescu 
and Christoph Hoffmann. 

 

Images are one of the most powerful means of communication available.  They 

are pervasive throughout our lives and are the central focus of computer 

graphics, visualization, and computer vision.  Most images, synthetic or 

photographic, are created using the planar pinhole camera model.  This classic 

camera model has important advantages including its simplicity, enabling 

efficient hardware and software implementations, and its similarity to human 

vision, yielding images familiar to users.  However, the planar pinhole camera 

model suffers from important limitations including sampling from a single 

viewpoint and requiring a uniform sampling rate along the image plane.  These 

limitations result in problems with occlusions, when no direct line-of-sight exists 

to the viewpoint, and sampling rates which do not correlate well to the complexity 

of 3-D data. 

This dissertation proposes a new paradigm of problem solving, dubbed Camera 

Model Design, which overcomes the limitations of the planar pinhole camera 

model to address many problems which still exist in computer graphics, 

visualization, and computer vision.  The Camera Model Design paradigm 

stresses four important ideas.  First, relax the constraints of the planar pinhole 

camera model allowing generalized camera rays which are no longer straight and 

no longer converge.  This facilitates camera models that overcome occlusions 

and have variable sampling rates.  Second, the choice of camera used for a 



 

 

xiv 

particular application need not be limited to the planar pinhole camera.  Instead, 

a new camera should be designed to directly address the needs of the 

application.  Third, camera models should no longer be static.  Instead they 

should dynamically adapt to the 3-D data they are sampling.  Finally, in order to 

support interactive exploration, a high level of computational efficiency should be 

maintained. 

We introduce three new families of camera model, the occlusion cameras, the 

graph cameras, and the general pinhole cameras, all of which address one or 

more of the planar pinhole camera limitations.  These new camera models are 

applied to a wide variety of applications which demonstrate the benefits of 

Camera Model Design for increasing computational efficiency, improving output 

image quality, and enhancing user performance in exploring 3-D datasets. 
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CHAPTER 1.  INTRODUCTION 

1.1. Motivation 

Images are ubiquitous in computer graphics, visualization, and computer vision 

and pervasive throughout our daily lives.  Images serve a number of important 

roles, the most obvious of which is for directly conveying information to a user 

through their eyes.  The eye is arguably the most powerful sensory organ 

available to humans making images an important means by which we deliver 

information to people.  As such, we are bombarded by images constantly 

throughout the day.  These images come in many forms including visualization of 

complex scientific phenomena, photographs, and entertainment images from 

television, movies, and video games. 

Aside from the use of images for direct consumption by a user, images are also 

used as a powerful primitive in computer graphics.  In particular, they serve as an 

inexpensive and flexible intermediate representation of the color and geometry in 

a 3-D scene.  These intermediate representations are used in support of many 

rendering algorithms.  For example, texture, bump, and displacement maps are 

essentially images that enable inexpensive methods for significantly enhancing a 

scene’s appearance without increasing geometric complexity.  By assuming 

distant geometry, environment maps serve as an approximation of a scene which 

makes interactive rendering of reflections and refractions tractable albeit 

inaccurate.  When enhanced with depth, images can also enable a wide variety 

of applications such as shadow mapping, accurate reflection and refraction, relief 

texture mapping, and ambient occlusion.  The use of images for these 
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approaches enables efficient and interactive render of all of these techniques 

which might otherwise be impossible. 

Tremendous strides have been made in computer graphics and visualization 

towards improving the visual quality of images.  In computer graphics, the 

realism achieved by the latest approaches is phenomenal.  Incredible strides 

have been made in rendering photorealistic images of synthetic 3-D worlds by 

improving geometric modeling techniques and by accurately modeling light 

transport.  Visualization as a field has developed with the goal of extracting 

salient features from various complex data sets.  The techniques used in both of 

these fields generally rely upon the use of the planar pinhole camera model as 

the method for reducing 3-D scene data into 2-D image data. 

The planar pinhole camera model is widely used because of its ability to reduce 

complex 3-D scenes into images in an efficient, organized, and meaningful way.  

The planar pinhole camera accomplishes this by closely mimicking the 

construction of the human eye.  This results in images familiar to users and 

enables efficient physical, hardware, and software implementations. 

There are, however, several limitations placed upon the planar pinhole camera.  

These limitations come in the form of limited field-of-view, a single viewpoint 

requiring direct line-of-sight, and uniform sampling.  These limitations significantly 

restrict the quantity of information which can be captured into a single image. 

1.2. The Planar Pinhole Camera Model 

Construction of the planar pinhole camera model is quite simple and its similarity 

to the human eye is critical to its popularity.  Figure 1.1 shows a comparison 

between a simplified human eye model, a physical planar pinhole camera, and 

the mathematical planar pinhole camera.   



 

 

3 

Lens Aperture
Film or 

CCD

Iris Lens Retina

Pinhole 

Aperture

Image 

Plane

 

Figure 1.1.  The planar pinhole camera model.  A comparison of the construction 

of the human eye (top), a physical camera implementation (middle), and the 

planar pinhole camera model (bottom).  Figure adapted from that of Short [144]. 
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For the human eye and physical planar pinhole camera implementations there is 

a one-to-one match between the three key components used to construct both – 

the lens, aperture, and imaging surface.  Light from the world enters the camera 

or eye first through the lens.  The purpose of the lens is to focus the light such 

that objects at a certain distance from the lens are not blurry.  This effect is 

known as depth-of-field and defines distance from the camera that will be in or 

out of focus.  The aperture or the iris in the case of the human eye is used to 

control the amount of light which enters the camera and ultimately reaches the 

imaging surface.  Finally, the imaging surface collects the light for the final image.  

For physical cameras, the imaging surface is generally flat and made up of film or 

a CCD (charge-coupled device).  In the case of the human eye, the imaging 

surface is the retina which is rounded to the shape of the eye.   

The mathematical planar pinhole camera construction is similar to the human eye 

and physical planar pinhole camera constructions with a few key simplifications.  

Like with the human eye and physical camera, the planar pinhole camera model 

has an imaging surface for collecting the final image.  In the planar pinhole 

camera model, this imaging surface is planar and referred to as the image plane.  

The image plane is subdivided into individual, usually square, elements referred 

to as pixels which contain color, depth, or other data.  The key simplification of 

 

Figure 1.2.  The construction of a 2-D perspective projection using the planar 

pinhole camera model. 
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the planar pinhole camera is in the use of a pinhole aperture, which is infinitely 

small, at the point where all of the camera rays converge.  This point is generally 

referred to as the center-of-projection (COP).  The pinhole aperture has the 

powerful property of infinite depth-of-field, further simplifying the camera by 

removing the need for any lenses.  

The pinhole aperture simplification in the planar pinhole camera model is quite 

powerful because it enables inexpensive projection and rendering.  The 

projection of a point in 3-D camera-space to 2-D image-space can be made a 

linear equation by use of the homogeneous coordinate system for an input point ��� ,  �� ,  ��� and a camera with focal distance 	 as seen in Equation 1.1.  Once 

vertices are projected into homogeneous coordinate space where lines in 3-D 

space remain lines in 2-D space, triangles can be quickly scan converted, or 

rasterized, into individual pixels.  In homogeneous coordinate space, the color, 

texture, and other parameters vary linearly and can be interpolated in a 

perspective correct manner [111].   

This compact projection and rasterization enables efficient hardware and 

software implementations that can render complex scenes at interactive rates.  

However, the planar pinhole camera model also suffers from three significant 

limitations that reduce the quantity of data it can encode. 

 (1)  The field-of-view for the planar pinhole camera is limited, preventing 

panoramic views of a scene.  Figure 1.2 shows an example planar pinhole 

camera construction.  The size � of image plane 
 with focal distance 	 can be 

calculated using Equation 1.2.  As the field-of-view � approaches 180°, the ratio � 	⁄  approaches ∞.  This means that the image plane must be infinitely large or 

�x w⁄y w�1 � w = � xyw� = � f 0 00 f 00 0 1� �x�y�z�� = fz� �x�y�� Equation 1.1 
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the focal distance infinitely small to accommodate a field-of-view approaching 

180°.  This planar pinhole camera limitation has been addressed by others’ work 

though innovations such as cube maps which give complete panoramas by 

combining six planar pinhole cameras each with a 90° field-of-view or spherical 

maps which allow the image plane to be spherical giving panoramic views.  

Further details of these approaches will be discussed in Chapter 2. 

xf = 2 tan $α2& Equation 1.2 

 (2) By design, the rays of the planar pinhole camera are always straight, 

converge at a single point (the center-of-projection), and only collect a single 

sample.  Relatively little has been done to remove all of these requirements, 

which, for example, limit shadow maps to hard shadows and lower scene 

approximation quality due to disocclusion errors. 

This means that occlusions within a scene might prevent important objects from 

being sampled.  Figure 1.3 shows an illustration of the problems caused by 

occlusion within a scene.  Here, all of the rays pass through the center-of-

projection ' and collect the first sample visible along each ray.  The result is that 

rays capture samples of the disc thrower statue, while the teapot remains 

completely unsampled.  Here, the region in green is sampled while the area in 

red remains occluded. 

 

Figure 1.3.  Illustration of occlusion limitation of the planar pinhole camera. 
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The occlusions created by the planar pinhole camera model are not just limited to 

inter-object occlusions.  Complex object often self-occlude as well. 

(3) The pixels of the planar pinhole camera are always the same size and shape 

across the image plane.  The camera rays associated with these pixels therefore 

sample in a spatially uniform manner1.  This uniform sampling of the image plane 

precludes adapting the sampling rate according to the importance of individual 

regions or data subsets.  There are many scenarios in which this uniform 

sampling is limiting.  For example, when visualizing large data sets, one might 

want to locally zoom while maintaining a global context, a so called focus-plus-

context visualization.  Additionally, applications such as shadow mapping can 

benefit from non-uniform sampling where regions of high importance, such as 

edges, would receive additional samples. 

In Figure 1.4 the rays of the planar pinhole camera sample the scene in a 

spatially uniform manner.  In this example, the regions in red contain much 

                                            

1 For any given plane in space parallel to the image plane, the intersection of any 

neighboring rays of the planar pinhole camera and the plane are equidistant to 

one another.  A distinction is required between this and the angular uniform 

sampling used in techniques such as cylindrical projections where the angle 

between neighboring rays is constant across the entire set.  

 

Figure 1.4.  Illustration of sampling limitation of the planar pinhole camera. 
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higher frequency data than the regions in green.  This means that either the rays 

in the red region are undersampling the data or the rays in the green region are 

wasted, oversampling low frequency data.  For many applications, ideally fewer 

rays would be used in the green regions in favor of using more rays in the red 

region.  

There are many applications where one or more of the planar pinhole camera 

limitations are a severe hindrance.   

    

  

Figure 1.5.  Shadow map aliasing example.  Conventional shadow mapping (top) 

uses the map (left) to shadow a novel view (right) compared to a non-uniform 

shadow mapping (bottom) where less aliasing occurs on shadow borders. 
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The use of images as primitives in computer graphics applications, particularly in 

interactive graphics, for efficiently computing high-quality visual effects is wide 

spread.  These intermediate images serve as high-quality geometry 

approximations which are generated primarily using the planar pinhole camera 

model.  An application such as shadow mapping is a perfect example of where 

the limitations of the planar pinhole camera come into play.  In shadow mapping, 

an image is rendered from the point of view of a light source.  That rendered 

image can then be used to determine if a pixel is in or out of shadow within the 

desired view.  This construction assumes that the light source is an infinitely 

small point in which case, shadowing is a binary decision, in or out of shadow.  In 

reality, light sources have non-zero area resulting in penumbra regions.  In 

addition, these shadow maps use uniform sampling.  The quality of hard 

shadows is often measured by the quality of the boundary between regions in 

and out of shadow.  Ideally, these regions would receive more samples 

compared to the other parts of the shadow map (Figure 1.5). 

 

Figure 1.6.  A comprehensive matrix of planar pinhole cameras.  The 

comprehensive visualization of a 3-D space with a planar pinhole camera 

requires many redundant and discontinuous views of the scene. 
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Visualizing a large spatial data set can be challenging with a planar pinhole 

camera.  It is rare for data sets to contain data that is uniformly interesting or 

important.  In fact, many data sets contain structures which are highly important 

that are often occluded by less important structures.  When trying to identify 

these interesting structures hidden behind occluding objects, a planar pinhole 

camera must be navigated around the occluding structures of the data set.  This 

navigation can often be difficult and unintuitive.  It is also the case that these data 

sets often have regions of interest that exist at widely different scales (i.e. 

globally interesting structures in addition to locally interesting structures at 

potentially many intermediate frequencies).  The uniform sampling of the planar 

pinhole camera precludes the simultaneous monitoring of these multi-scale 

structures at adequate rates without using multiple planar pinhole cameras 

simultaneously. 

A commonly addressed problem in computer vision involves the monitoring of 

complex 3-D spaces with multiple cameras for the purpose of security and 

situational awareness.  The conventional approach to monitoring these spaces 

involves using tens of cameras and surrounding a user by a large collection of 

video monitors.  The user is then expected to watch those tens of video feeds 

simultaneously with the goal, for example, of identifying suspicious individuals 

and keeping track of their activities.  As can be noted in Figure 1.6, this scenario 

presents three significant problems.  In order to adequately cover a space, many 

cameras will need to be used and there is the possibility of significant areas of 

overlap between views.  Also, tracking an individual as they move through the 

world can be challenging as they switch between different camera views.  Finally, 

requiring a user to track multiple monitors is inefficient since they are only truly 

able to watch a single monitor at any given moment. 

These are just a small sampling of the scenarios and problem which the planar 

pinhole camera presents serious limitations.  In order to address the limitations of 

the planar pinhole camera, we introduce Camera Model Design, a new paradigm 
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of problem solving which relaxes the constraints of planar pinhole camera model 

to address problems in computer graphics, visualization, and computer vision. 

1.3. Camera Model Design 

The use and acceptance of the planar pinhole camera model for projection and 

rasterization is so pervasive that its limitations are often ignored or accepted as a 

fact of life.  I believe that any apprehension about removing the planar pinhole 

camera constraints is simply unjustified. 

I advocate a new problem solving paradigm for computer graphics, visualization, 

and computer vision called Camera Model Design.  The Camera Model Design 

paradigm advocates no longer limiting ourselves to the planar pinhole camera 

model.  Instead, we design camera models that best suit a given application and 

optimize the camera models dynamically according to the data currently being 

sampled.  The ultimate goal is to maximize the quantity of visual information 

contained within an image, at the same time maintaining a high level of 

computational efficiency. 

My thesis therefore is that: 

In order to create images that better sample 3-D scenes, I propose 

abandoning the constraints of the conventional planar pinhole camera 

model by no longer requiring that rays be straight, converge, or sample 

space uniformly.  Camera models can then be designed for specific 

applications and optimized dynamically for each 3-D scene or dataset so 

as to achieve adequate sampling.  At the same time, camera models 

should also be designed to preserve image computation efficiency in order 

to support interactive rendering of dynamic scenes. 



 

 

12 

There are four principles that Camera Model Design advocates for on a general 

basis.  Compliance with all four principles is by no means required or possible in 

all situations. 

(1) The shape and structure of camera rays in the planar pinhole camera is one 

of its most significant restricting factors.  Therefore, removing key planar pinhole 

camera constraints is the first principle of camera model design.  This includes 

no longer requiring that camera rays2 converge, be straight, or sample space 

uniformly.  The result is that camera models become flexible entities that can 

take up any of a virtually unlimited number of configurations to overcome 

occlusions and sampling limitations. 

(2) Currently, the choice of camera models available to applications is quite 

limited, using variations of either orthographic projections or the planar pinhole 

camera.  The reality is that not all applications need the same type of information 

to be gathered into an image and these rigid camera models do not account for 

the potential needs of individual specific applications.  While the only adjustable 

parameter of the planar pinhole camera remains the field-of-view, Camera Model 

Design instead advocates developing unique cameras models whose properties 

address the needs of individual applications. 

(3) Once a camera model has been designed to satisfy the needs of a particular 

application, the camera model does not need to remain rigid throughout its use in 

the application.  Instead, the camera should be designed in a data-centric 

manner, dynamically adapting according to changes in viewpoint, changes in the 

                                            

2 The term camera rays will be used loosely as the camera rays in most of our 

approaches are no longer mathematical rays.  Instead a camera ray is defined as 

the locus of 3-D points which project to the same output image plane location.   
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1.4. Overview of Results 

Thus far, three classes of camera have been developed based on the Camera 

Model Design paradigm.  Each class of camera is designed specifically to 

address one or more of the limitations of the planar pinhole camera.  As such 

they can also be used to address many of the scenarios presented in Section 

1.2. 

1.4.1. The Occlusion Camera Family 

Occlusion cameras have been designed to reduce occlusion locally around 

foreground objects.  There are three camera models which belong to this class: 

the single pole occlusion camera, the depth discontinuity occlusion camera, and 

the epipolar occlusion camera.  All of these cameras work in similar ways by 

sending rays around the silhouette of objects in order to capture samples which 

are barely hidden from the current viewpoint.  They differ in the method by which 

they accomplish this goal.  The single pole occlusion camera simply bends the 

    

Figure 1.8.  Occlusion camera application to volumetric display acceleration.  

Planar pinhole camera (left) and depth discontinuity occlusion camera (right) 

images used to replace geometry in three-dimensional display rendering. 
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camera rays radially around a user defined pole through the scene.  The depth 

discontinuity occlusion camera detects and bends rays around the silhouettes of 

objects.  Neither the single pole occlusion camera nor the depth discontinuity 

occlusion camera has any mechanism for determining the valid set of 

reconstruction viewpoints a priori.  The epipolar occlusion camera detects object 

silhouettes along epipolar lines, bending the rays around them and guaranteeing 

a set of viewpoints which will have valid reconstructions.  

There are many applications for the occlusion cameras.  For example, by 

replacing scene geometry with image-based approximations, high-quality 

rendering effects such as reflections and refractions can be calculated very 

efficiently (Figure 1.7).  Using occlusion cameras to produce the image-based 

    

    

    

Figure 1.9.  Occlusion camera application to image compression.  Top: Occlusion 

camera image (left) used to compress a single image (right) from the sea of 

images.  The occlusion camera image and a planar pinhole camera image (not 

shown) are warped to the output viewpoint location (middle) and a residual is 

calculated (bottom). 
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contains hundreds or even thousands of images, with a high degree of 

redundancy.  Here, a small collection of representative images, either planar 

pinhole camera or occlusion camera images can be gathered.  The 

representative image data can be transformed, or warped, from its original 

viewpoint to the viewpoints of many images from the complete sea of images 

(Figure 1.9).  Once warped, residuals can be calculated and stored allowing error 

free reconstructions.  The occlusion camera provides a better method of 

encoding the inter-image redundancies reducing storage requirements for the 

data set.  

  

Figure 1.11.  A curved ray camera used to linearize a path.  A curved ray camera 

(left) allows forward and backward navigation along a user defined path (right). 

1.4.2. The Graph Camera Family 

While the occlusion camera family was designed to alleviate local occlusions, the 

graph camera family was designed to alleviate occlusions globally within the 3-D 

scene, facilitating comprehensive visualization of the entire scene.  The graph 

camera functions by taking a planar pinhole camera frustum and repeatedly 

applying bending, splitting, or merging operations to the frustum.  The result is a 

graph of planar pinhole cameras.  As seen in Figure 1.10, the original graph 

camera produces images with piecewise linear rays resulting in C0 continuity 

across changing perspectives.  The abrupt changes in perspective produce 

distortions for objects that cross from one perspective to the next.  The curved 
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ray camera was developed to minimize these distortions by using rays which are 

conic sections for transition regions.  This results in rays which are C1 continuous 

while still permitting efficient projection and rasterization. 

One of the more important applications of the graph camera is enhanced 

navigation through 3-D scenes by allowing users to preview regions of the scene 

not visible from the current viewpoint.  The graph camera introduces the idea of a 

continuum of navigation methods.  The most basic form allows for unrestricted 

navigation by simply enhancing a planar pinhole camera with portals that preview 

upcoming occluded space.  More restrictive navigation only allows the user to 

move forward or backward along a predefined path through the space (Figure 

1.11).  Finally, a comprehensive graph camera can be created which allows a 

user to monitor an entire space in a single image requiring no navigation at all. 

  

Figure 1.12.  Graph camera application to scene summarization.  The graph 

camera image (left) summarizes the 3-D scene (right). 

Another application of the graph camera involves summarizing a 3-D scene into 

a single image.  Artists and animators often wish to create posters that highlight 

important features of a 3-D scene they have created.  The standard approach to 

do this either requires matting and blending multiple planar pinhole camera 

images of the scene or remodeling the scene in such a meaningful way that a 

single planar pinhole camera image summarizes it.  Both of these processes can 

take many hours to complete.  The graph camera provides multiple methods to 
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Figure 

A final application of the graph camera is for enhanced surveillance of real

spaces.  Traditional surveillance involves simultane

planar pinhole camera video feeds which can be redundant and discontinuous.  

The redundancy or overlap of multiple views can make it difficult to perform tasks 

like counting the number of objects visible.  The discontinuity of view

it difficult to track an object as it transitions between various views.  Using the 

graph camera, those planar pinhole camera video feeds can be combined into a 

single graph camera video feed (

removes most of not all discontinuities and redundancies from the input images.

The occlusion camera and graph camera families where developed spec
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planar pinhole camera allowing it to work on many types of data including 

geometry, volume data, and image data.   

   

   

 

  

Figure 1.14.  Remote visualization application of the general pinhole camera.  

Top: a planar pinhole camera image (left) used for remote visualization and two 

resampled output images (middle and right).  Middle: a general pinhole camera 

image and corresponding frames.  Bottom: ground truth output frames rendered 

from original scene geometry. 

One powerful application of the general pinhole camera is in remote visualization 

(Figure 1.14).  Here, the server will render a general pinhole camera image at a 

variable sampling rate.  The server will transfer it to the client.  The client will then 

use the general pinhole camera image to reconstruct a planar pinhole camera 

image of the scene.  Since the general pinhole camera encodes more data than 

is needed for a single view, the user can zoom and rotate the view, producing 

high-quality output, without requesting additional data from the server.  When 
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Figure 1.16.  General pinhole camera extreme antialiasing application.  The 

general pinhole camera is used for 361x extreme antialiasing (left) compared to 

conventional 16x antialiasing (right).  Images magnified 5 times are shown for 

illustrative purposes. 

1.5. Organization 

The remained of this dissertation is organized as follows.  Chapter 2 will discuss 

work related to Camera Model Design.  Chapters 3, 4, and 5 will introduce the 3 

families of camera models designed thus far and their applications.  These 

include: the occlusion camera family, the graph camera family, and the general 

pinhole camera family.  Chapter 7 discusses the challenges of rendering camera 

models with non-linear projection.  Chapter 8 takes a look at the potential 

perceptual benefits of Camera Model Design.  Finally, Chapter 9 will conclude 

the work and discuss future directions. 
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CHAPTER 2.  PREVIOUS WORK 

There exists no previous work which is directly parallel to that of Camera Model 

Design.  There are, however, a large number of topics worthy of discussion that 

are related to improving the sampling of a 3-D scene within images for the 

purpose of addressing occlusions or sampling in a non-uniform manner.  These 

approaches can be broken down into three primary groups: planar pinhole 

camera based approaches; non-pinhole camera based approaches; and model 

modification based approaches. 

2.1. Planar Pinhole Camera Approaches 

2.1.1. Depth Enhanced Images 

Many early image-based attempts at trying to more effectively capture 3-D 

scenes focused primarily on using planar pinhole camera images enhanced with 

per pixel depth [98, 100, 102].  When attempting to render a scene from a novel 

viewpoint, one of these image-based representations located nearby the novel 

viewpoint is warped to the location of the novel viewpoint to synthesize a new 

view.  In most cases, one depth image is insufficient for addressing the 

disocclusion errors that exist within complex 3-D scenes.   

To address the disocclusion errors, additional nearby depth images can be 

warped to the same novel viewpoint and combined with the original synthesized 

view.  Brute force techniques [98] simply warp ( nearby images and hope that all 

disocclusion errors are removed.  Other techniques, such as the vacuum buffer 
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[129], identify subvolumes of the view frustum which are potentially missing 

samples, allowing for conservative avoidance of disocclusion errors.  Such an 

approach still requires that one iterate over many depth images until all 

subvolumes of the desired view frustum are filled. 

Unfortunately, even with a scene densely sampled by reference images, 

removing all disocclusion errors might require warping an unbounded number of 

reference images to the novel viewpoint.  Most of those images contain large 

quantities of data which are redundant with neighboring depth images resulting in 

wasteful storage and computation.   

To address the problems of redundancy, new scene representations were 

developed which capture more than one sample per ray.  Multi-layered z-buffers 

[100], depth peeling [42, 163], layered depth images (LDIs) [142], and LDI trees 

[25] are all based on the planar pinhole camera model, but relax the constraint 

that each ray only captures one sample, by instead capturing multiple layers of 

the scene from a single viewpoint.  While these approaches do reduce 

redundancies, all require significant additional costs in construction, storage, and 

rendering.  This additional cost can be quite extensive based upon the number of 

layers used, often precluding the use of dynamic scenes.  Determining the 

number of layers needed to conservatively sample a scene is also a difficult 

problem to solve in a reasonable amount of time.  Instead, a fixed number of 

layers is generally used which does nothing to guarantee scene coverage and 

may lead to inefficiencies in regions which require fewer layers.  

There have also been a number of approaches which relax the uniform sampling 

requirement of the planar pinhole camera in order to improve the quality of 

applications such as shadow mapping.  These methods rely on multiple 

rendering passes [45], offline rendering [4], or the use of irregular data structures 

[70].  These approaches all produce high-quality or even perfect hard shadows, 



 

 

25 

but none of them represents an ideal solution to the problem given the currently 

available hardware. 

2.1.2. Depth-Free Representations 

The methods mentioned thus far assume a depth value is associated with each 

pixel of an image.  Another class of representation methods model 3-D scenes 

by sampling a dense set of rays in space, removing the need for any depth to be 

stored. 

The plenoptic function is a depth-free representation used for modeling [1, 102] 

and rendering [7] visual data for 7 degrees of visual freedom (3-D position, 2-D 

angle, 1-D time, and 1-D wavelength).  A planar pinhole camera at a fixed 

position is a simple plenoptic capture device which encodes 2 degrees of angular 

freedom.  Recording video, a planar pinhole camera also captures time making it 

a 3-D plenoptic capture device.  The lightfield [63, 84] is a depth-free 

representation that encodes a 4-D (5-D when video is used) plenoptic function.  

Lightfields model a 3-D scene by combining data from a dense array of planar 

pinhole cameras.  This technique models only a set of rays which sample the 

scene, never capturing any actual geometry.  Similarly, the lumigraph [19, 53] is 

a quasi depth-free 4-D plenoptic function which uses a geometric proxy on top of 

a lightfield.  A true 7-D plenoptic capture device will contain every ray potentially 

needed for reconstructing any novel viewpoint in space.  These techniques do a 

good job capturing complex 3-D scenes, but their data is large, unstructured, and 

redundant. 
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2.2. Non-Pinhole Camera Approaches 

2.2.1. Panoramas 

There are several non-pinhole camera models which capture into a single image 

more than would be seen from any single viewpoint.  Panoramas [26] are single-

layer images which address the field-of-view limitation of the planar pinhole 

camera model by capturing samples in all possible directions from a single 

viewpoint.  When enhanced with depth [10], a small amount of translation from 

the center-of-projection is possible.  Mosaic techniques [152] relax the single 

viewpoint requirement of panoramas, but still require that the viewpoints be 

nearly coincident. 

A number of multiple viewpoint panorama methods also exist.   

Multiple center-of-projection images [133] sample scenes with a vertical slit or 

pushbroom camera [56] that slides along a user selected path around a scene.  

The resulting images provide a continuous transition between a wide variety of 

different viewpoints.  The rendering of multiple center-of-projection images can 

be quite expensive.  The path which defines the image must be finely discretized 

and the scene must be rendered once for each column of the image 

corresponding to the various viewpoints.  A similar approach has been used to 

create multiperspective panoramas used in cel animation [170].  Like the multiple 

center-of-projection images, these cel panoramas are rendered offline using a 

sliding frame across a finely discretized path. 

Street panoramas [2, 137] were created for photographing urban landscapes by 

sliding a vertical pushbroom camera down a street.  The resulting multiple 

perspective images provide a continuous view for a single street.  In order to 

make construction automatic, street panoramas make an important assumption 

about the geometry in the scene always being located at the building façades.  



 

 

27 

This creates distortions with cars on the street or when the panorama comes to 

an alley or cross street.  By estimating the geometry [33] of the scene and using 

a crossed-silt projection [178] in place of a pushbroom camera, the perspective 

can be dynamically varied compensating for these distortions [138].  

Nevertheless, for all street panorama implementations, the resulting images 

require sampling from many viewpoints which makes construction slow and 

precludes dynamic scenes.  Additionally, the output of a street panorama is a 

very wide format image which maps poorly to modern video displays. 

2.2.2. General Linear Camera 

Another system for removing the planar pinhole camera constraints is the 

general linear camera [126, 172, 173] which is constructed by interpolating 

intermediate rays between three non-concurrent rays in space.  Combining 

multiple general linear cameras together to produce a continuous image is not a 

trivial problem.  Blending the rays of neighboring general linear cameras together 

[174] produces a continuous ray space which leads to continuous output images.  

The resulting camera model does not provide a fast projection operation 

requiring raytracing to be performed in order to produce images. 

2.2.3. Artistic Rendering 

For centuries artists have been manipulating perspective, in some cases 

unknowingly, in order to further their artistic expression.  Some rendering 

systems have also attempted to reproduce these same effects.  One such 

system [3] composites planar pinhole camera images of objects from various 

perspectives together into a single image.  This approach sometime has difficulty 

with visibility ordering, does not scale well with scene complexity, and does not 

support multiple perspectives per object.   
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Artistic collages of real-world scenes have been achieved by the use of flexible 

camera arrays [107].  These arrays of planar pinhole camera images are roughly 

aligned resulting in a multiperspective image with intentionally visible seams. 

Work has also been done in generating multiple perspective images by 

resampling video cubes of real-world scenes.  A video cube is constructed by 

gathering a stack of images from a video camera moving along a continuous 

path.  Arbitrary cuts can be made through the video cube to generate 

multiperspective videos or images [141].  Video cubes have been used to create 

abstract stylized video effects such as impressionist and cubist effects [72]. 

2.2.4. Computer Vision 

Some computer vision research has focused on removing the limitations of the 

planar pinhole camera model.  Most early efforts focused on producing 

omnidirectional cameras.  For example, the disparity embedded with a 

catadioptric non-pinhole camera has been exploited for extracting 3-D geometry 

from a single image [77].  A number of non-pinhole cameras models have been 

studied in order to model complex lens and catadioptric systems.  These systems 

include pushbroom cameras [56], two-slit or crossed-slit cameras [114, 178], and 

their generalization, the general linear camera [173], but these camera models 

only partially relax the single viewpoint constraint, not sufficiently overcoming 

problems such as occlusion. 

2.2.5. Occlusion Cameras 

Occlusion cameras attempt to capture samples visible from a reference viewpoint 

in addition to those samples barely hidden from the reference viewpoint.  The 

goal of these cameras is to alleviate disocclusion errors that occur as the desired 

view translates away from the reference viewpoint.  The single pole occlusion 
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camera [103] does this by performing a radial distortion of the camera rays 

around a user specified pole through the scene.  The depth discontinuity 

occlusion camera [127] automatically detects the silhouettes of objects and 

distorts the rays of the camera to disoccluded objects hidden just out of view 

behind those silhouettes.  Both of these occlusion cameras are tightly coupled to 

the thesis of this work and will be discussed in greater detail in Chapter 3. 

2.3. Model Modification Approaches 

A final class of method that can be used to overcome the limitations of the planar 

pinhole camera is one which continues to use the planar pinhole camera, but 

modifies the scene to enhance what is visible from the desired viewpoint.  These 

approaches almost exclusively address the problem of occlusion.  For a more 

detailed state-of-the-art description, the reader is referred to a comprehensive 

taxonomy of over 50 occlusion management techniques [39]. 

2.3.1. Transparency and Cutaway 

Both transparency and cutaway techniques have been developed as natural 

approaches for removing occlusion from scenes.  These methods have the 

advantage of not distorting the shape of data in any way, maintaining spatial 

relationships between object subsets.   

Transparency [34, 44, 62] has the advantage of still showing a complete model, 

but simply reducing the opacity of less important features, making them less 

visible.  The disadvantage of these techniques is that they only work well in 

models with a few layers of transparency.  As the number of layers increases, 

either each individual layer contributes less influence to the output image or the 

transparent layers combine to become opaque.   
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To address the limitations of transparency, the cutaway approaches [20, 35, 44, 

86] have been developed.  Cutaway works by simply removing outer layers of the 

dataset, revealing occluded subsets.  Cutaway approaches can remove many 

layers of occluding surface, but as more layers are cutaway important data 

subsets might be lost.  The complete removal of occluding layers in this 

approach prevents simultaneous monitoring of multiple layers of the dataset.  

Alternatively, cutaway data can be displayed in a separate view.  This alternative 

approach is limited in the number of layers it can support. 

2.3.2. Dataset Distortion 

An alternative approach for handling occlusions in datasets is to distort the 

dataset such that data subsets of interest become visible to the user.  Earlier 2-D 

work including Generalized Fisheye Views [48], the Hyperbolic Browser [79], and 

EdgeLens [168] used graph and hierarchical methods for visualizing data.  For 3-

D datasets, two general approaches have been developed to date, deformation 

and explosion. 

The deformation techniques strive to disoccluded data subsets of interest while 

preserving original connectivity and minimizing dataset distortions.  Deformation 

approaches have been used in a wide variety of applications including providing 

occlusion-free street-level animation of driving routes [154], constructing 

panoramic tourist and ski maps [31] which maximize visibility and minimize 

distortion, comprehensively visualizing short travel routes [32] which distorts 

space around the corners of a path, and in focus-plus-context visualizations of 

bird’s eye views of urban environments [132]. All of these techniques strive to 

modify the spatial relationships between various data subsets as little as possible 

leading to results which are similar to the original dataset.  Nevertheless, the 

distortions that they introduce can lead to confusion, in particular when spatial 
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relationships such as distance and direction are important.  All of the techniques 

completely fail when the data of interest is contained within the occluding object. 

Explosion techniques rely on datasets that are hierarchically subdivided by either 

user interaction [18, 37] or automatically [85].  Using the hierarchical information, 

subsets of data can be moved away from one another in order to reveal elements 

of the scene that would normally be occluded.  The explosion technique is well 

suited for datasets where objects are separable into meaningful subsets and 

where some data subsets are completely occluded by others.  Explosion 

techniques try to maintain configurations which closely match the original dataset 

configuration, but they still require significant distortions of the data subsets to 

reveal occluded objects.  This disturbs the spatial relationships between objects, 

relying upon the user’s ability to mentally connect the pieces.    

2.4. Camera Model Design in Nature 

The idea of application specific cameras is not a purely human invention.  Nature 

itself has a number of interesting examples of Camera Model Design.  A number 

of snake species including some boa constrictors and rattlesnakes have eyes 

design to see in the infrared spectrum, far beyond what is visible to humans, 

allowing them to see minute differences in temperature [29].  Many birds of prey 

also have specialized visual systems.  Eagles and falcons have eyes with 

multiple levels of magnification.  The magnification is at its highest near the 

center of the eye allowing them to focus at great distance [29, 80].  Owl eyes 

have an extremely large aperture (iris) allowing them to have extraordinary night 

vision [147].  Many inserts such as bees, flies, and dragon flies have wide angle 

multifaceted lenses on their eyes.  These types of lenses allow for panoramic 

views of the world, and their eye sensors are designed to detect motion allowing 

them to quickly avoid predators [29].  This is by no means an exhaustive list of 

animals that benefit from Camera Model Design in nature but simply a few 
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interesting examples.  In general, nature has designed predators with forward 

looking eyes for hunting and prey with eyes set to the side for more panoramic 

views to avoid predators. 
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CHAPTER 3.  THE OCCLUSION CAMERA FAMILY 

A depth image, defined as an image with per-pixel depth, is an important 

computer graphics primitive.  One use of depth images is in the context of image-

based rendering where they replace geometry in order to reduce rendering cost 

for 3-D warping [102] or for high-quality interactive rendering effects (e.g. 

impostors [95, 127], relief texture mapping [112, 125], or ambient occlusion [14]).  

Depth images are also used to determine visibility from the light’s point of view in 

shadow computation.  In the context of compression of rendered imagery, depth 

image key frames are automatically mapped to intermediate frames by 3-D 

warping, reducing the amount of data residual images need to store [5].  In the 

context of 3-D displays, depth images can be used as an intermediate 

representation that accelerates the rendering of the 3-D image and reduces the 

bandwidth to the 3-D display. 

An important challenge with depth images is posed by disocclusion errors.  A 

depth image is typically rendered with a planar pinhole camera and only stores 

samples visible from the camera’s viewpoint.  Even minimal viewpoint 

translations expose regions that were not visible from the original viewpoint, 

which causes disocclusion errors.  In image-based rendering this leads to highly 

objectionable “holes” in the output image or reduced fidelity in rendering effects.  

In shadow mapping, the single viewpoint constraint limits the approach to hard 

shadows.  In compression, the disocclusion errors lead to high residuals, 

lowering compression performance (i.e. compression ratio).  In the context of a 3-

D display, disocclusion errors limit image quality when the display is seen from 

additional viewpoints (i.e. second-eye viewpoint in a single-user scenario, and 

additional user viewpoints in a multi-user scenario). 
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The classic approach for alleviating the problem of disocclusion errors is to use 

additional depth images, rendered from nearby viewpoints, in the hope of filling in 

disocclusion errors.  However, such an approach is inefficient.  First, disocclusion 

errors occur throughout the volume of the scene, and one cannot find a small set 

of additional depth images that provide all missing samples.  Second, the 

additional depth images have considerable overlap, which causes costly 

redundancy.  Third, the output image is rendered from a variable number of 

depth images, so the advantage of bounded rendering cost is lost. 

Disocclusion errors occur because the depth image is constructed with a planar 

pinhole camera which samples the scene from only a single viewpoint, yet the 

depth image is asked to support additional viewpoints.  This is only possible 

when the scene is trivial and the additional viewpoints do not require additional 

samples.  

To alleviate the problem of disocclusion errors we have innovated at the camera 

model level.  Instead of constructing the depth image with a planar pinhole 

camera, the depth image is constructed with a non-pinhole called an occlusion 

camera.  In addition to the samples seen from a reference viewpoint, an 

occlusion camera also gathers samples that are likely to become visible from 

nearby viewpoints.  Moreover, although occlusion cameras are non-pinholes, 

they do provide closed-form projection and therefore occlusion camera images 

can be constructed efficiently in feed-forward fashion, by projecting and 

rasterizing scene triangles. 

The first such camera model is the single pole occlusion camera [103].  The 

single pole occlusion camera performs a 3-D distortion of the rays of a planar 

pinhole camera around a pole through the scene.  This distortion of the rays 

effectively enables the camera to see around the silhouette of objects to gather 

samples previously hidden from the reference viewpoint.  Like traditional depth 

images, single pole occlusion camera images are single-layer, non-redundant, 
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and their connectivity is implicit.  The single pole occlusion camera does not 

guarantee all samples will be captured, but taking the union of a planar pinhole 

camera image with a single pole occlusion camera image provides much better 

scene coverage for a wide variety of viewpoints as compared to a planar pinhole 

camera image alone. 

The single pole occlusion camera does a good job alleviating disocclusion errors, 

but it lacks scene awareness.  This results in cases of inefficient image allocation 

(i.e. wasted pixels) and poor scene coverage for complex occluders.  The depth 

discontinuity occlusion camera [127] was developed to be more aware of the 3-D 

scene.  It detects the silhouettes of objects by finding depth discontinuities and 

distorts the camera rays around those silhouettes to expose samples hidden 

from the reference viewpoint.  Like the single pole occlusion camera, the depth 

discontinuity occlusion camera produces single-layer and non-redundant images 

with implicit connectivity.  This allows them to be efficiently substituted for planar 

pinhole camera depth images in many applications. 

Both of the previously mentioned occlusion cameras are successful at capturing 

samples not visible from the current reference viewpoint.  One weakness of both 

methods however is that they cannot tell you which set of desired viewpoints will 

have adequate samples for reconstruction.  The third occlusion camera model, 

the epipolar occlusion camera, is a camera model designed to capture most of 

the samples seen by a planar pinhole camera translating between two 

viewpoints.  The camera works by searching for depth discontinuities along 

epipolar lines which are created by linear camera motion.  Whenever a depth 

discontinuity is detected, space is added in the image for potentially hidden 

samples.  The resulting view-segment produces a single layer 2-D image that 

samples almost all of the visible geometry without any redundancy.   

The epipolar occlusion camera overcomes one major disadvantage of earlier 

occlusion cameras.  The set of viewpoints with valid reconstructions was not 
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known a priori for either the single pole occlusion camera or the depth 

discontinuity occlusion camera.  The epipolar occlusion camera overcomes this 

limitation by gathering all of the samples for a 3-D scene visible from along a 

segment of viewpoints. 

As part of my work, I have designed applications for both the single pole 

occlusion camera and the depth discontinuity occlusion camera.  Therefore, for 

completeness, I describe the single pole occlusion camera and depth 

discontinuity occlusion camera in detail.  All images and any text are used with 

the authors’ permission. 

3.1. Single Pole Occlusion Camera [103]  

To address the problem of occlusion in scenes, the single pole occlusion camera 

(SPOC) was developed.  The SPOC is a non-pinhole camera which is a 

generalization of the planar pinhole camera (PPC) designed for disoccluding 

around a single object within a scene.  The SPOC performs a 3-D radial 

distortion, defined by a pole, on geometry within the scene to sample surfaces 

hidden from the reference viewpoint.  These newly exposed surfaces are ones 

which lie slightly hidden from the reference view behind the silhouette of 

occluders and are therefore likely to become exposed as the desired view 

translates away from the reference viewpoint.   

A PPC gathers exactly one sample per ray as does the SPOC.  The 3-D 

distortion of the SPOC effectively trades image resolution (x-y domain) for 

increased resolution along the rays of the planar pinhole camera (z domain).  In 

Figure 3.1, the lid of the teapot is not sampled using the PPC.  In the SPOC, the 

lid of the teapot receives many samples at the cost of lower resolution sampling 

for the body of the teapot. 
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The SPOC does not guarantee that all disocclusion errors can be avoided.  In 

addition, the SPOC does not capture the entire scene, nor should it because this 

would be wasteful oversampling.  In Figure 3.1, for example, the front, top, 

bottom, and sides of the teapot are well sampled, but back of the teapot remains 

unsampled.  In complex scenes, the samples captured by the SPOC might not 

contain all the samples corresponding to the planar pinhole camera, resulting in 

disocclusion errors from the reference viewpoint.  To address this limitation, an 

SPOC can be efficiently merged with the reference PPC image.  To do this, only 

those samples not visible from the reference PPC are added to the SPOC image 

(Figure 3.2).  

  
 

 

Figure 3.1.  Samples captured with a planar pinhole camera compared to a 

single pole occlusion camera.  With a PPC depth image (A), disocclusion errors 

can occur as the view translates away from the reference view (B).  Using the 

SPOC in place of the PPC (C), a wide variety of viewpoints is supported without 

disocclusion errors appearing (D). 

The SPOC rays are non-intersecting segments which cover the entire camera 

field-of-view.  There is exactly one ray through each 3-D point in the scene, with 

the exception of those lying exactly on the pole.  The SPOC supports closed form 

projection and there is a one-to-one mapping between scene triangles and image 

plane triangles.  The implication being that SPOC images can be rendered on the 

GPU using the feed-forward graphics pipeline. 

A B 
C 

D 
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3.1.1. Camera Model 

The SPOC was designed with a couple of goals in mind.  The first was to capture 

the samples visible from the reference view.  In addition, it should capture 

samples barely hidden from the reference view at the object silhouettes, thereby 

allowing disocclusion error free translation away from the reference viewpoint.  

The camera model should also be designed to render quickly by fitting as tightly 

as possible into the standard feed-forward graphics pipeline.  Doing this requires 

closed-form projection for 3-D points at a minimum.  Closed-form projection 

implies that the projection of every 3-D point will have a unique image plane 

location that can be found in a finite number of operations.  Additionally, fitting 

into the feed-forward graphics pipeline requires the image be coherent in that 

there should be a one-to-one mapping between a triangle in the scene and on 

the image plane.  

 

PPC 

 

PPC + (SPOC – PPC) 

 

Truth 

Figure 3.2.  Single pole occlusion camera samples merged with planar pinhole 

camera samples.  The samples contributed by the SPOC (middle), marked in 

pink, are added to the samples from the PPC (left) to approach the quality of the 

ground truth (right). 

The reverse planar pinhole camera model (RPPC) has many of these properties 

(Figure 3.3, left).  The RPPC reverses the perspective foreshortening effect 

resulting in a view frustum which starts larger and shrinks as it moves away from 
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the camera.  This is similar to collecting the farthest visible sample along each 

ray of a PPC. 

   

Figure 3.3.  The reverse planar pinhole camera model.  The RPPC model (left) 

used to capture the bunny dataset (center) is compared to using a conventional 

PPC (right). 

Figure 3.3 compares the results of capturing the bunny dataset with both a 

conventional PPC and well as the RPPC.  The RPPC captures many samples 

which are barely hidden from the conventional PPC behind the silhouette of the 

object.  Due to the simplicity of the camera model, the scene can be easily 

rendered using fixed-function hardware by simply rendering the scene using the 

opposite view PPC and flipping the z-buffer test.  

  

Figure 3.4.  Limitation of the reverse planar pinhole camera model illustrated.  An 

RPPC (left) captures some surfaces poorly.  Applying a radial distortion (right) 

captures those surfaces better. 
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The RPPC captures many surfaces not visible from the reference viewpoint 

except for those surfaces whose normals are near perpendicular to rays 

capturing them.  Figure 3.4 left shows an example of this problem.  A simple 

scene is constructed of two boxes.  The scene is viewed from the direction of the 

red arrow.  The surface normals of the top of the large box and sides of the small 

box are nearly perpendicular to the rays in these regions resulting in insufficient 

sampling.  This inspired the introduction of a radial distortion around a pole 

(Figure 3.4, right). 

 

Figure 3.5.  Diagram of the 3-D radial distortion used in the single pole occlusion 

camera model. 

The SPOC was therefore designed to have many of the properties of the RPPC, 

in addition to a radial distortion designed to capture samples from around all 

sides of an occluder.  The pole is a point chosen on the image plane, and thus a 

3-D line.  The best choice in general is for the pole to go through the centroid of 

the occluder object, but this is not a requirement.  The distortion then pushes 

samples away from the pole according to their depth in the scene.  3-D points 

which are closer to the center-of-projection are pushed less, while points farther 

from the center-of-projection are pushed further away.  This distortion means that 

two points which lie on the same PPC ray will lie on different rays with the SPOC, 

thereby exposing regions which are barely hidden from the reference viewpoint. 
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Figure 3.5 shows an example of the 3-D radial distortion working.  Here the point 

P is projected to the image plane location Pu where it would normally be occluded 

by the projection of point R.  Instead, the projection of R is displaced to the 

location Rd and Pu is displaced by a larger amount (since it is farther from the 

center-of-projection) to the location Pd.  In this configuration, R no longer 

occludes P in the output image.  Now the ray which effectively samples P no 

longer travels from COP to B as is the case with the conventional PPC.  Instead 

the ray travels from COP to A and then from A to C.  The amount of distortion 

which the projections of R and P receive is a linear expression in 1/z, where z is 

the camera space z-coordinate of the point. 

The SPOC model is defined by a PPC and a six-tuple (u0, v0, zn, zf, dn, df) that 

describes the distortion.  The image plane coordinates (u0, v0) define the 

coordinates of the pole.  The coordinates of the pole are typically chosen to be 

the centroid of the PPC projection of the occluder.  The values of (zn, zf) define 

the range of the scene in which the distortion will be applied.  The value of zn will 

typically be chosen to be some value smaller than the closest point of the 

occluder to the camera.  The value of zf will typically be large enough to 

encompass the entire scene.  Finally, the values of (dn, df) define the distortion 

     

Figure 3.6.  Example of the single pole occlusion camera disocclusion 

capabilities.  The SPOC image (left) captures 5 of 6 faces for the cube and the 

entire background avoiding any disocclusion errors (middle) as opposed to using 

a PPC image (right). 
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magnitudes for points on the planes represented by (zn, zf).  The distortion value 

dn is typically set to zero while the distortion value df defines how much of the 

occluded object becomes visible.  The larger df becomes, the farther samples are 

pulled out from behind the occluding object.  Looking at Figure 3.1, the large df 

exposes a significant portion of the top and bottom of the teapot and eventually a 

larger value would expose the back of it as well.  Similarly in Figure 3.6, df is 

sufficiently large to capture the entire background hidden behind the occluding 

cube. 

3.1.2. Projection 

For a 3-D point P(x, y, z) which lies between zn and zf the image plane 

coordinates of the point when projected with an SPOC (PPC, (u0, v0, zn, zf, dn, 

df)) are given by Equation 3.1.  By examining the projection equation a little 

closer, we can see that the magnitude of the distortion is calculated by using only 

1/z while the projected coordinates (uu, vu) only affect the direction of the 

distortion. 

In the case of a point whose z value is less than zn, the planar pinhole camera 

projection is applied.  By definition, no points should lie beyond zf, but if they do, 

the original SPOC projection equation can be applied or the distortion can be 

clamped at df. 

�u*, v*, z� =  PPC�P� 

d�z� =  d/ + 1 z/� − 1 z�1 z/� − 1 z2� �d2 − d/� 

�u3, v3� = �u*, v*� + �u* − u4, v* − v4�‖�u* − u4, v* − v4�‖ d�z� 

Equation 3.1
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The pole represents a singularity in the projection.  All of the 3-D points that land 

within the view frustum of the PPC have exactly one projection point onto the 

image plane, except for points lying on the pole.  By definition, these points have 

no distortion direction.  Each of these points in fact project to a circle centered at 

the pole whose radius is the magnitude of distortion at the point’s z value.  This 

singularity can be hidden by pushing the camera’s zn beyond some geometry 

lying on the pole, effectively masking the hole.  

3.1.3. Rays and Unprojection 

In mathematical terms, a ray is a point and a direction, which accurately 

describes the shape of the PPC rays.  The definition of camera rays in terms of 

the SPOC needs to be relaxed.  For the SPOC, a camera ray is defined as the 

locus of 3-D points which project to the same output image location.  

Given an SPOC output image plane location (ud, vd), the set of 3-D points which 

represent that ray can be found by varying z from zn to zf.  The 3-D point P for a 

 

Figure 3.7.  A visualization of the single pole occlusion camera rays.  The pole is 

denoted in red.  The rays of the camera remain undistorted (blue) up to the near 

plane and are pulled toward the pole beyond it (green). 



 

 

44 

given z value can be computed by calculating the distortion magnitude d(z) from 

Equation 3.1 and using that value to calculate P using Equation 3.2. 

�u*, v*� = �u3, v3� − �u3 − u4, v3 − v4�‖�u3 − u4, v3 − v4�‖ d�z� 

P = Plane�z� ∩ PPC. Ray�u*, v*� 

Equation 3.2

The direction of the distortion can be computed by using the known distorted 

coordinates (ud, vd) position relative to the coordinates of the pole (u0, v0).  To 

calculate the undistorted coordinates (uu, vu), the distorted point is pulled toward 

the pole with a magnitude defined by d(z) for the known z value.  Points with z 

values less than zn receive a zero distortion magnitude making their (ud, vd) and 

(uu, vu) coordinates identical.  The output 3-D point P is obtained by calculating 

the point which lies on the PPC ray (uu, vu) at the distance of z. 

The rays of the SPOC are effectively piecewise linear rays consisting of two 

segments.  Referring again to Figure 3.5, the ray which effectively samples point 

P is comprised of the segments (COP, A) and (A, C).  This relatively simple 

 

SPOC 

- 

 

PPC 

= 

 

SPOC-PPC 

Figure 3.8.  Result of an image-set-difference on a single pole occlusion camera 

image and a planar pinhole camera image. 
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structure is possible because 1/z is linear in screen space and the distortion is 

linear with respect to 1/z, making the rays straight within the distortion region. 

Not all values of (ud, vd, z) are valid for unprojection to produce a 3-D point.  The 

undistorted coordinates (uu, vu) are not allowed to cross the pole.  This requires 

the distortion magnitude d(z) be less than the distance from (ud, vd) to the pole 

(u0, v0).  This also means that the rays of the SPOC cannot cross the pole.  As 

seen in Figure 3.7, they simply terminate when reaching the pole.  

 

 

PPC 

 

PPC + (SPOC - PPC) 

 

Truth 

 

PPC 

 

PPC + (SPOC - PPC) 

 

Truth 

Figure 3.9.  Single pole occlusion camera image of the Happy Buddha model.  

The SPOC reference image alleviates distortions from a variety of viewpoints. 
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3.1.4. Point-Set Merging 

PPC images are very prone to disocclusion errors when the view translates even 

a small distance away from the reference viewpoint.  SPOC images are far less 

prone to these disocclusion errors since they store samples barely hidden from 

the reference view at the silhouettes of objects.  These samples fill the gaps 

which would normally appear when using a PPC image, thereby extending the 

usefulness of the reference image far beyond just the reference viewpoint. 

Even so, the SPOC images make no guarantee that the samples they have will 

be the complete set required to reconstruct a view.  In fact, due to the distortion, 

samples visible in the planar pinhole camera reference image can become 

occluded in the SPOC image.  In Figure 3.9, the feet of the statue are occluded 

in the SPOC image despite being visible from the PPC’s perspective.  This 

problem is mitigated by rendering a PPC image along with an SPOC image that 

only collects samples not visible in the PPC image. 

 

PPC 

 

PPC + (SPOC - PPC) 

 

Truth 

Figure 3.10.  A single pole occlusion camera reconstruction of the Thai statue 

model. 
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This is accomplished by using an SPOC image-set-difference operator.  Given 

two input images, a sample from the first image is unprojected to its 3-D position 

and the resulting 3-D point is projected onto the image plane of the second 

image.  If the resulting z value is similar to the z value stored in the second 

image, the sample is a duplicate and marked as such.  This operator works on 

two SPOC images, but can accept PPC image as well, since they are a special 

case of an SPOC image with no distortion (Figure 3.8).  Rendering the samples 

from the PPC and the SPOC image-set-difference (SPOC – PPC) pair results in 

no loss of samples from the PPC view while avoiding most disocclusion errors 

(Figure 3.9 and Figure 3.10).   

3.2. The Depth Discontinuity Occlusion Camera [127] 

The SPOC suffers from significant limitations due to its coarsely specified 

distortion.  The SPOC is essentially limited to a single occluder or non-complex 

set of occluders.  When used on multiple objects or complex occluders important 

samples can be lost.  To recover from those errors, the SPOC images are used 

in conjunction with PPC images. 

To address these challenges in a more robust manner, a new more scene-aware 

occlusion camera was developed, the depth discontinuity occlusion camera 

(DDOC).  While the SPOC used one global deformation of camera rays to avoid 

occlusions, the DDOC automatically computes fine-grain local camera ray 

distortions to produce images which more successfully handle complex scenes 

and multiple occluders. 

In Figure 3.11, the DDOC stores additional samples of the floor and back wall not 

visible from the PPC.  The DDOC does not store all of the samples for the scene, 

but does store enough to generate a much better novel viewpoint reconstruction 

of the scene when compared to the PPC.   
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The DDOC model consists of a PPC augmented with a distortion map.  Efficient 

projection is achieved by first projecting a 3-D point with the PPC, then applying 

the distortion stored at the distortion map location.  The images produced by the 

DDOC have the same advantages as those of a PPC image such as a bounded 

number of samples and implicit connectivity. 

3.2.1. Camera Model 

Like the SPOC, the DDOC strives to alleviate occlusions by capturing samples 

which are barely hidden behind the silhouette of occluders.  The DDOC 

accomplishes this in a more scene-aware manner.  Given a scene and a 

  

 

 

 

Figure 3.11.  A comparison between a planar pinhole camera image and depth 

discontinuity occlusion camera image.  The PPC (left) and DDOC (right) 

reference images are shown along with corresponding novel viewpoint 

reconstructions.  The DDOC does a better job alleviating disocclusion errors 

which are measure as the number of missing pixels. 
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reference viewpoint, the DDOC accomplished the goal by applying a distortion 

that acts only on samples near object silhouettes.  

 
 

Figure 3.12.  Illustration of the distortion used in the depth discontinuity occlusion 

camera. 

Given a reference PPC image, the silhouette of objects can be detected by 

finding depth discontinuities within the image.  These are identified by finding 

pixels whose depth values significantly vary from those of their neighbors.  The 

left image of Figure 3.12 shows a small portion of a reference image plane.  The 

depth discontinuity dd lies between the occluder and the background on the 

image plane.  When projecting a point with the DDOC, the sample point a, which 

lies behind the occluder in 3-D space, will be moved in the direction of the normal 

n of dd to the location ad. 

The middle panel of Figure 3.12 shows a cross section of the scene.  Here, the 

depth discontinuity dd is represented by the 3-D points E and E’ and the image 

plane location e.  The 3-D point A is projected with a conventional PPC to the 

image plane location a.  Here, the distortion magnitude depends upon the depth 

of the point within the scene.  The magnitude is zero up to zn, the depth of the 

occluder E’.  The distortion is its largest df at zf, the depth of the occluded object 
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E, and remains constant beyond that point.  In this way, objects which are close 

to the occluder move less in favor of objects farther away, since distant objects 

are more likely to become visible as the desired view translates.  

The right panel of Figure 3.12 shows the same cross section with the effect of the 

previously described distortion on the rays of the camera.  The distortion effect is 

only performed locally on rays that lie between Al and Ar and thus only points 

which project between al and ar using the PPC.  Beyond that, no other points are 

affected by the distortion.  The locations of al and ar are determined by the size of 

the distortion neighborhood which is a user specified parameter D.  The points al 

and ar are each chosen to be D pixels away from e.  The points A, E, and Ad from 

the middle panel all lie between Al and Ar.  

The rays of the camera are initially the rays of the PPC.  They remain unaffected 

until they reach zn.  At that point, the rays move along the depth discontinuity 

normal n towards the occluder, effectively pushing the samples away from the 

occluder.  At the end of the distortion region zf, the rays continue with a constant 

amount of distortion df until they reach the end of the view frustum.   

3.2.2. Distortion Map Construction 

The DDOC model is defined by a reference planar pinhole camera (PPHC0) and 

a distortion map.  The distortion map is a five-tuple which specifies the distortion 

for each PPHC0 ray and has the same resolution as PPHC0.  Each distortion 

sample is a five-tuple containing (diru, dirv, zn, zf, df).  The pair (diru, dirv) is a 2-D 

vector which describes the image plane direction for the distortion (n from the 

Figure 3.12).  The scalars (zn, zf) define the interval of distortion along the z-axis.  

The distortion magnitude varies between zero at zn and df at zf.  Like the SPOC, 

the distortion varies linearly with 1/z, making the distorted portion of the DDOC 

rays straight segments. 
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Construction proceeds as follows.  Given the 3-D scene S and a reference view 

PPHC0, the distortion map DMAP is built in a six step process. 

1. Compute the depth buffer ZB by rendering S with PPHC0 

2. Compute a boolean depth discontinuity map EB using ZB 

3. For each edge pixel e in EB 

• Splat e in DMAP 

4. For each edge pixel e in EB 

• Adjust the size of splat defined by e 

5. For each pixel in DMAP 

• Remove orphan distortion samples 

6. For each pixel in DMAP 

• Finalize the distortion magnitude 

Steps 1 and 2 compute the depth discontinuity map EB.  This is done by first 

rendering the scene with the planar pinhole camera PPHC0 obtaining its depth 

buffer ZB.  Depth discontinuities are then detected on ZB at locations where the 

second order finite depth difference is larger than a threshold [128]. 

Step 3 begins the process of setting the DMAP values.  For every edge pixel e in 

EB, the five-tuple for that cell must be determined.  The distortion direction dir is 

set to be perpendicular to the local depth discontinuity direction by computing a 

least squares fitting line to the edge pixel in the neighborhood of e.  The 

orientation is set to point away from the occluder towards the larger z value.  The 

values of zn and zf are set to be the near and far z values which formed the depth 

discontinuity in the first place.  The last scalar df is calculated in step 6.  Once the 

five-tuple for the edge pixel has been determined, that edge pixel is splatted onto 

the DMAP using a circle centered at e with a radius of D, the distortion 

magnitude. 
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During the construction phase, each DMAP pixel stores three temporary scalars 

in addition to the distortion five-tuple.  Those values are cu and cv, the center of 

the splat and r, the radius of the splat.  During the next processing step, this data 

is used to remove conflicts when a DMAP location has already been set.  In the 

case that two splats conflict, the splat whose center is closest to the current 

sample is used.  The distance to the splats can be computed using the current 

DMAP location and the splat center (cu, cv). 

 

 

 

 

Figure 3.13.  Depth discontinuity occlusion camera visualization of the bunny.  

Top: A visualization of the distortion map (left) used to generate the DDOC image 

(right).  Bottom: A novel viewpoint reconstruction illustrates how the DDOC 

image (right) improves sampling of the scene, shrinking the shadow of the bunny 

as compared to a PPC image (left). 
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Step 4 attempts to detect and eliminate any distortion conflicts that may have 

arisen as part of step 3.  In particular, if any DMAP location is affected by two or 

more depth discontinuities they might be conflicted.  The normal directions of the 

two depth discontinuities are compared and if they are above a threshold, 90° in 

the authors’ implementation, they are considered to be conflicted.  In that case, 

the splat radius of the two conflicted depth discontinuities are shrunk such that 

the splat circles no longer overlap thereby eliminating the conflict. 

 

 

 

 

Figure 3.14.  Depth discontinuity occlusion camera example of the auditorium.  

The PPC reference image (top, left) does not have enough samples for a novel 

viewpoint reconstruction (bottom) while the DDOC reference image (right) does. 
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Step 5 takes a pass over each cell of DMAP eliminating samples invalidated by 

step 4.  Distortion samples whose distance to their splat center is larger than the 

radius of that splat are deleted.  

Step 6 finalizes the distortion samples at each location in DMAP.  In particular, 

the distortion magnitude needs to be set.  It is obvious that the samples on the 

hidden side of the depth discontinuity need to move out from behind the 

occluder.  It is also necessary to move samples on the visible side of the edge to 

make space for the hidden samples.   

To achieve this effect, the distortion magnitude df is varied linearly from r to zero 

as the signed distance from the edge increases to -r to r.  In this way, samples, 

that are already visible, exist in the band [0,r] and are compressed to the interval 

[r/2,r] to make space for hidden samples.  The hidden samples in the band [-r,0] 

are compressed to the interval [0,r/2] making them visible in the output image. 

 

Figure 3.15.  A depth discontinuity occlusion camera example of the Unity.  A 

three-way comparison between reconstructions that use a PPC reference image 

(left), DDOC reference image (middle), and the original scene geometry (right). 

Let x be the signed distance between a distortion map location and the edge.  

The distortion value df can be found using a bias and scale operation ;< = �= − �� 2⁄ .  This operation implies a loss of resolution in the distortion region 

in exchange for additional sampling along the rays of the camera (Figure 3.15).  

This tradeoff can be mitigated by increasing the output image resolution.  
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Figure 3.13 shows an example distortion map, DDOC, and a novel viewpoint 

reconstruction.  The radii of the splats are at their maximum around the body of 

the bunny, but needed to be compressed around the ears of the bunny.  When 

viewed from the side, it is apparent that the DDOC does a better job sampling the 

scene than a PPC does from the same viewpoint. 

3.2.3. Projection and Unprojection 

Projecting a 3-D point using the DDOC is similar to that of the SPOC.  Using 

Equation 3.3, a 3-D point P is first projected with the planar pinhole camera 

PPHC0 to the undistorted image plane coordinates (uu, vu, z).  The direction of 

distortion (diru, dirv) applied to point can be retrieved from the distortion map 

along with zn, zf, and df.  The magnitude of distortion can then be linearly 

interpolated using 1/z from zero at zn to df at zf.  The output coordinates (ud, vd) 

are then found by adding the distortion vector to the undistorted coordinates. 

�u*, v*, z� = PPHC4�P� 

�dir*, dirA, z/, z2, d2� =  DMAP�u*, v*� 

d�z� =
EFG
FH 0, z < z/1 z/� − 1 z�1 z/� − 1 z2� d2, z/ ≤ z ≤ z2

d2, z > z2
L 

�u3, v3� = �u*, v*� + �dir*, dirA�d�z� 

Equation 3.3

Unlike the SPOC, the distortion of the DDOC is sample-based and therefore 

noninvertible.  This makes the distorted coordinates (ud, vd, z) insufficient for 

unprojecting the point. 
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To enable unprojection, the DDOC reference image is augmented with two 

additional channels of data containing the distortion vector (du, dv).  Once the 

distortion vector is known, the value of (ud-du, vd-dv, z) provides the undistorted 

image plane coordinates of the sample (uu, vu, z).  The 3-D point can then be 

recovered by unprojecting the undistorted sample using the planar pinhole 

camera PPHC0.   

3.3. The Epipolar Occlusion Camera 

Occlusion cameras offer an elegant solution to the problem of disocclusion 

errors.  Like a regular depth image, an occlusion camera image has a single 

layer, it does not store redundant samples, and it is rendered in hardware.  

Unlike regular depth images, an occlusion camera image also stores samples 

needed in nearby views.  

The SPOC is constructed by using a 3-D radial distortion on a PPC around a 

pole defined by the occluder’s center.  The SPOC has the merit of introducing the 

occlusion camera concept but the simple camera model only works for a few 

relatively simple objects. 

The DDOC disoccludes samples by distorting them along the direction 

perpendicular to the occluder edge, and away from the occluder.  The distortion 

is specified per pixel with a distortion map which provides the flexibility needed to 

handle complex scenes.  However, the DDOC makes room for the disoccluded 

samples by reducing the resolution on a band parallel to the occluder edge.  The 

visible samples do not use the entire band anymore which makes room for the 

disoccluded samples.  When there is enough room between occluders this 

approach only implies halving the resolution close to occluder edges, when 

occluders are close together, the DDOC’s disocclusion capability is greatly 

reduced.  In Figure 3.19 the picket fence has a distance between pickets of 1 

pixel and there is no room for disoccluding the back wall samples hidden by the 
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occluder spacing is not a problem.  The EOC provides efficient projection so its 

image is constructed directly by rendering the scene using the EOC, with 

hardware support, and not by combining several PPC images. 

The EOC concept is illustrated in Figure 3.16.  Both PPC images miss back wall 

samples that are visible from intermediate viewpoints.  For example, some of the 

samples occluded by the teapot handle in the left image are then occluded by the 

teapot body in the right image.  These samples are visible in the intermediate 

view and their absence causes the white gap around the handle in the top right 

image.  The EOC is constructed from the planar pinhole camera PPHC of the left 

image, the segment of viewpoints LR, and the scene.  The goal is for the EOC to 

gather the samples visible by PPHC as it translates on the viewpoint segment.  

Due to epipolar geometry constraints, the disocclusion events that occur can be 

conveniently described as the sum of independent disocclusion events on 

individual epipolar lines.  To take advantage of this fact, EOC rows are defined 

according to the epipolar lines induced by LR on PPHC.  For each row, the EOC 

gathers additional samples as needed, according to the occluders crossed by the 

epipolar line of the row.  In the case shown, LR is parallel to the PPHC rows, thus 

the epipolar lines are the PPHC image rows, and consequently the EOC has the 

same rows as PPHC.  The EOC image has more samples than the PPHC image 

on rows where more disocclusion events occur (i.e. rows that cross the handle, 

the body, and the spout), and the same number of samples on rows without 

disocclusion events (i.e. the top and bottom rows).  Figure 3.17 shows the EOC 

working on a complex scene.  Figure 3.18 shows an EOC built to support forward 

translation. 

3.3.1. Camera Model 

The EOC model is constructed from a 3-D scene S, a planar pinhole camera 

PPHC, and a segment of viewpoints LR.  The rays of the EOC are line segments 



 

 

59 

which do not pass through a common point.  The EOC model is encoded with 

PPHC, LR, a projection map PM, and a ray map RM.  RM stores the ray 

segments of the EOC and PM enables fast projection. 

3.3.1.1. Construction Algorithm 

The EOC is constructed with the following steps. 

EOC (S, PPHC, LR) { 

1. Render S with PPHC from L to create depth buffer ZB0 

2. For every epipolar line ev defined by LR in ZB0 

a. For every pixel u on ev 

• If u is not a depth discontinuity 

o Update RM with ray (PPHC.Ray(ev(u))) 

• If u is a depth discontinuity 

o Compute additional set of rays Ai from (v, ZB0, u, ev) 

o Update RM with rays Ai 

o Update PM using first and last rays A1, and An 

} 

The first step creates a planar pinhole camera depth buffer ZB0 of the scene, as 

seen from the left endpoint of the viewpoint of segments.  The rows of the 

projection and ray maps correspond to the epipolar lines induced in ZB0 by the 

translation LR.  The second step walks on epipolar lines and sets the two maps 

one row at the time.  While no depth discontinuity is found, the PPHC ray is 

simply added to RM.  For a depth discontinuity, PM and RM are updated to 

introduce a set of additional rays.  

Figure 3.20 left shows the rays of a row of an EOC constructed for a scene with a 

single foreground object (red) occluding a background object (green).  The row 

has the rays of PPHC located at L except for the additional set of rays (blue) 
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clipped by P0P1, do not reach zf, and do not have a rL pair.  In the case shown 

here, these rays do not find any samples, and they correctly leave a black gap in 

the EOC.  Similar black gaps can be observed in Figure 3.16 and Figure 3.19 to 

the right of the teapot handle and the pickets, respectively. 

   

   

Figure 3.18.  Epipolar occlusion camera examples with radial epipolar lines.  

EOC images constructed for a short (left) and a long (middle) viewpoint segment 

aligned with the PPHC view direction, and the samples gathered by the EOC 

shown from a third view (right).  As before, the EOC disoccludes on rows, now 

defined by radial epipolar lines.   

The ray map RM is updated with the set of additional rays Ai by simply 

appending the rays Ai to the rays that are already in the current row.  Each RM 

location has room for a (rL, rR) pair of rays.  Appending the additional rays 

effectively extends the row of the EOC image to accommodate hidden samples.  

Sufficient RM locations are used to provide the samples at full resolution, as 

dictated by PPHC. 
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Once an additional set of rays is inserted into RM, PM is updated with the first 

and last of the additional rays.  In Figure 3.20 left, the PM locations that have to 

be updated are those corresponding to the segment P0P2.  For a given location, a 

candidate z0 value is computed by intersecting the location L ray with ray A1.  

The candidate value replaces z0 if closer than z0.  The candidate z1 value is given 

by zf and it replaces z1 if farther.  Offset o1 is updated to o0+ uP2-uP0 if this 

candidate value is larger.  Offset o0 does not change. 

 

Figure 3.20.  Visualization of the epipolar occlusion camera rays for one epipolar 

line.  Visualization of an EOC row for a wide (left) and narrow (right) occluder. 

Figure 3.22 gives another example of an EOC image.  The bunny is not visible 

from the left or right viewpoints.  The EOC opens the doors to sample the bunny 

which is needed as the viewpoint translates from left to right.  The EOC image 

avoids disocclusion errors which are considerable when the two regular depth 

images are used, since they do not sample the bunny.  Like in the case in Figure 

3.19, the small gap between the two red occluders precludes any significant 

disocclusion when a DDOC is used.  Figure 3.18 shows a case when the 

epipolar line (i.e. the intersection between the PPHC image plane and the 

segment of viewpoints LR) is inside the PPHC image, which causes radial 

epipolar lines. 
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Figure 3.21.  Visualization of extreme cases of occlusion alleviated by the 

epipolar occlusion camera.  Visualization of an EOC row for a stack of occluders 

hidden by the closest one (left), and side by side occluders separated by small 

gaps (right). 

3.3.1.2. Performance 

The EOC rays sample the space fully and without any redundancy resulting in 

good disocclusion capability.  The EOC is not conservative, since it addresses 

only depth discontinuities that appear in L.  However, the rays inserted handle 

additional “unforeseen” disocclusion errors well.  For example, in the left image in 

Figure 3.21, the blue, yellow, and pink occluders are hidden by the red occluder 

and are not visible from L, so they are not addressed explicitly.  Yet the 

disocclusions they cause are handled well by the additional rays introduced to 

handle the depth discontinuity caused by the red occluder.  The right case 

corresponds to the picket fence shown in Figure 3.19. 

The EOC rendering algorithm is implemented on the GPU as described in 

Section 3.4.2.  A vertex shader implements the projection of the vertices of a 

triangle with PPHC.  A geometry shader subdivides the triangle into spans and 
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projects the spans with the projection map.  A pixel shader intersects the span 

with the one or two ray segments of each pixel of the projected span.  Table 3.1 

shows the algorithm performance for a variety of scenes.  Performance depends 

on the number and size of triangles which determines the number of spans and 

on the number and magnitude of depth discontinuities.  That impacts the 

tightness of the EOC projection and implicitly the amount of overdraw (i.e. empty 

ray span intersections). 

Table 3.1.  Epipolar occlusion camera performance. 

Scene Figure Triangles Render Time (ms) 

Teapot Figure 3.16 1K 19 

Unity Figure 3.17 110K 1,793 

Picket Fence Figure 3.19 1K 16 

Sphere Figure 3.18, top 1K 17 

Armadillo Figure 3.18, bottom 346K 1,130 

Double Door Figure 3.22 

69K 68 

16K 25 

4K 20 

1K 15 

 

The EOC makes room on epipolar lines for hidden samples that are needed as 

the viewpoint translates.  We define the width of the EOC image (also the width 

of the ray map) as the maximum width of any of its rows.  The width w of a row 

verifies the following inequality  M <  M4 +  NO, where w0 is the width of PPHC, N 

is the number of depth discontinuities on the row, and s is the maximum shift 

caused by one depth discontinuity.  The value of s can be computed as O =  PQ ∙ ��S − �N� / �S, where LR is the length of the viewpoint segment, and zF 
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3.4. Rendering Occlusion Camera Images 

3.4.1. The Single Pole Occlusion Camera and Depth Discontinuity Occlusion 

Camera 

There are a wide variety of rendering methods for both the SPOC and DDOC.  

The choice of technique depends upon the desired levels of quality, accuracy, 

and performance.  A detailed description and analysis of the available techniques 

is presented in Chapter 6.   

In the case of the SPOC, the simple distortion model allowed easily establishing 

a conservative bounding box for projected triangles.  Thus, a hybrid raycasting 

approach was chosen as the original method for producing images.  In 

subsequent work however, triangle subdivision was used instead due to the large 

performance gains which are traded for only minimal loss of accuracy. 

For the DDOC, having a sample-based distortion made calculating a compact 

and conservative bounding box for projected triangles difficult.  To address this 

limitation triangle subdivision was chosen from the beginning as the rendering 

method of choice.  To minimize the error, triangles where subdivided until they 

were approximately 1 output pixel in size, making the result almost 

indistinguishable from a raycasting result. 

3.4.2. The Epipolar Occlusion Camera 

The epipolar decomposition of the EOC makes triangles no longer contiguous on 

the image.  The lack of row to row continuity precludes the use of any triangle-

based rendering methods, making rendering an EOC a more challenging 

problem than rendering an SPOC or DDOC.  Point-based rendering could be 

used, assuming enough scene points exist.  Instead, a modified version of the 
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hybrid raycasting approach was used in rendering EOC images.  Since a 

rendered triangle is no longer necessarily contiguous on an EOC image, the 

resulting bounding box for that triangle can be quite large.  Instead, using the 

epipolar decomposition allows rasterization on segments with tight bounding 

boxes in the output domain. 

Given the 3-D scene S and the EOC(PPHC, LR, PM, RM), the epipolar occlusion 

camera image is computed by processing each triangle t in S with the following 

algorithm. 

1. Project t with PPHC to t’ 

2. For every epipolar span e0e1 of t’ 

a. Project e0 e1 with PM into RM to e0’e1’ 

b. Rasterize e0’e1’ by intersecting e0e1 with rays RM(e0’ … e1’) 

The triangle is split into spans according to the epipolar lines induced by LR into 

PPHC.  A span e0e1 is projected with the EOC to find the RM segment e0’e1’ that 

stores the EOC rays that could intersect e0e1.  A segment P0P1 is projected with 

an EOC by first projecting its endpoints P0 and P1 as described in the previous 

section.  Let [P00, P01] and [P10 , P11] be the projections of P0 and P1 (a point 

projects with an EOC to a point or segment, so P00 and P01, and P10 and P11 

could be identical).  The projection of P0P1 is the bounding segment [P00, P11].  

For every RM location ej between e0’ and e1’ the span is intersected with the rays 

at ej.  If an intersection is found, the sample is written in the EOC image at the 

location corresponding to ej. 

3.5. Occlusion Camera Applications 

Like PPC images, occlusion camera images have a single layer, are non-

redundant, and can be rendered efficiently by projection followed by rasterization 

with hardware support.  Unlike a PPC image, the occlusion camera images have 
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samples for clusters of viewpoints and not just for a single viewpoint.  There are 

several applications, inherited from PPC depth images, in which the occlusion 

cameras can outperform the PPC. 

3.5.1. Geometry Replacement 

Depth images are a convenient solution to the challenging problems of level-of-

detail adaptation and occlusion culling, as work in image-based rendering by 3-D 

warping [102], impostors [95, 127], and geometric detail texturing [112] have 

shown.  However, the occlusion culling provided by a PPC depth image is too 

 

     

Figure 3.23.  An epipolar occlusion camera image used as a geometry 

replacement.  The EOC image (top) has the spout magnified with a pixel grid and 

span start/end points highlighted with green/yellow (bottom, left).  A wireframe 

visualization of the reconstructed mesh is shown as well (bottom, right). 
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Like PPC depth images, SPOC and DDOC depth images both have implicit 

connectivity making triangle mesh rendering trivial.  Even though the rows of the 

EOC are misaligned, sufficient coherence remains to enable a straight forward 

triangulation by connecting corresponding spans on adjacent rows.  Figure 3.23 

shows how the triangulation of corresponding spans realigns the spout samples 

to form a mesh. 

In order to increase the range of translations supported, configurations of multiple 

occlusion cameras can be used to provide even better scene coverage.  A 

combination of two EOC images, one with a vertical and one with a horizontal 

viewpoint segment, is particularly effective (Figure 3.24). 

3.5.2. Geometry Approximations for High-Quality Rendering Effects 

In the quest for higher-quality and higher-performance rendering researchers 

have resorted to approximating scene geometry with more efficient 

representations.  The three main desirable properties of such an alternative 

representation are high-fidelity approximation, efficient construction, and efficient 

rendering.  The representation should capture the geometry it replaces 

sufficiently well such that the resulting images be virtually indistinguishable from 

the images obtained when rendering with the original geometry.  To support 

dynamic scenes, the representation has to be created on the fly, which requires 

fast construction.  Lastly, the alternative representation must deliver the desired 

performance boost to the application.  We distinguish between applications 

where the representation can be rendered directly with the conventional feed-

forward approach of projection followed by rasterization, such as when a distant 

tree is rendered using a billboard, and applications where the representation has 

to be rendered by intersection with one ray at a time, like those needed in the 

case of reflections, refractions, and relief texture mapping.  We focus on the 

second type of applications.  For such applications a fast computation of the 
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intersection between a ray and the alternative geometry representation is a 

central concern. 

Images enhanced with per pixel depth have two of these desired properties.  A 

depth image is constructed efficiently by rendering the geometry it replaces with 

the help of graphics hardware.  Fast ray / depth image intersection is enabled by 

the fact that projection of a ray onto the depth image is a segment, which 

reduces the dimensionality of the intersection search space from two to one.  

Modern graphics hardware allows stepping along the ray projection, per pixel, at 

interactive rates.  However, depth images are acquired from a single viewpoint—

with a PPC, or along a single view direction—with an orthographic camera, which 

limits their geometry modeling power.  Such a depth image misses surfaces that 

become visible when the geometry approximation is rendered by the application, 

which lowers the quality of the result. 

We propose constructing depth images using occlusion cameras.  Such 

occlusion camera depth images offer a high-fidelity approximation of scene 

geometry while construction and rendering costs remain low.  Once the 

constraints of the PPC are relaxed, the rays of an occlusion camera can be used 

instead to sample all surfaces exposed by the application.  To ensure 

construction and rendering efficiency, the occlusion camera is designed to 

provide a fast projection operation.  This enables constructing the occlusion 

camera depth image in feed-forward fashion by projection followed by 

rasterization.  The closed-form, unambiguous projection of the occlusion camera 

is leveraged a second time, during rendering, to compute the projection of the ray 

onto the occlusion camera image.  As in the case of PPCs, the ray / occlusion 

camera depth image intersection is found by walking on the one-dimensional 

projection of the ray.  Unlike for PPCs, ray projection is not a straight line, though 

this does not raise intersection costs significantly. 
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3.5.2.1.2. Rendering Effects Accelerated Using Depth Images 

Reflection and refraction have been studied extensively in interactive rendering, 

yet no complete solution exists.  We assign reflection and refraction rendering 

techniques to four groups: ray tracing [165], image-based rendering [28, 53, 84], 

projection [110], and reflected/refracted scene approximation.  We only discuss 

group 4, since it is most relevant. 

Environment mapping [17] approximates the reflected scene with cube map and 

it is currently the preferred approach for interactive applications due to its 

efficiency, robustness, and good results when scene geometry is far from the 

reflector/refractor.  Environment mapping performs poorly close to the 

reflector/refractor.  Improved results are obtained by approximating the scene 

with a sphere [16], but few environments are spherical so the fidelity is still quite 

limited.  The scene approximation can be improved using depth images [127, 

153].  Quality reflections are produced for simple objects or for select viewpoints, 

but the insufficient coverage is a limitation for non-trivial scenes or wide viewpoint 

translations. 

  

Figure 3.28.  Visualization of the single pole occlusion camera rays.  The rays in 

3-D (left) and of their curved projection on the SPOC depth image (right) used in 

Figure 3.25. 
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Compared to reflection, refraction rays require additional work since rays interact 

with the refractor at least twice—once entering and once leaving the object.  

Several techniques have been developed for computing the second refractor 

interaction at interactive rates, including pre-computed distance fields [24], GPU 

raytracing [136], and image-space approximations [171]. 

 

Figure 3.29.  Ray / occlusion camera depth image intersection. 

Another rendering effect that requires intersecting depth images with individual 

rays is relief texture mapping [125].  True geometric detail is added to a coarse 

model by texturing each triangle with a height map.  A conventional relief texture 

samples surface detail orthographically, along the direction of the normal of the 

underlying coarse model, which limits the technique to height field surfaces.  

Sampling degrades when the geometric detail becomes aligned with the normal 

of the underlying surface.  The technique has been extended to non-height field 

surface detail by resorting to a relief texture with multiple layers; each sampled 

orthographically [124].  The extension works well when complex detail can be 

captured in a few layers, as is the case for a chain link fence for example.  The 

strength of the extended method is the ability to capture double-sided detail.  

However, capturing geometric detail perpendicular to the underlying surface 
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remains challenging as a large number of layers is needed.  Our work extends 

relief texture mapping in an orthogonal direction and multilayered occlusion 

camera relief textures could be developed to collect the advantages of both 

techniques. 

3.5.2.2. Ray Intersection 

Like a regular depth image, an occlusion camera depth image is defined by an 

image with color and depth per pixel, and a camera model which allows 

projection.  The intersection of a ray (a, b) with an occlusion camera depth image 

OCC is computed as follows: 

1. Clip the segment (a, b) with the bounding volume of OCC to obtain the 

segment (c, d), see Figure 3.29. 

2. Interpolate (c, d) in 3-D, from near to far to create n sub-segments.  For 

each sub-segment (sk, sk+1): 

a. Project sk and sk+1 to depth image at pk = (uk, vk, zk) and pk+1 = (uk+1, 

vk+1, zk+1). 

b. Lookup image depths izk, izk+1 at (uk, vk), (uk+1, vk+1). 

c. Intersect in 2-D segments [(0, zk), (1, zk+1)] and [(0, izk), (1, izk+1)] to 

obtain intersection (tj, zj). 

d. If (tj, zj) is a valid intersection, return depth image color icj at 

lerp((uk, vk), (uk+1, vk+1), tj), else continue with next sub-segment. 

The ray is interpolated in 3-D since its projection is not a straight line, and one 

cannot simply rasterize the segment that connects the endpoint projections.  

Each intermediate point is projected with the occlusion camera to trace the 

curved projection correctly.  Since the depth z stored by the depth image varies 

linearly in the image, the intersection can be computed efficiently in a 2-D space 

(t, z), where t is the parameter locating the intersection along segment (pk, pk+1).  

For these applications, this generic algorithm is used on the SPOC. 
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surfaces, which are then used by a second pass to compute the ray emerging 

after a second refraction. 

3.5.2.3.2. Relief Texture Mapping 

Relief texture map rendering is triggered by rendering the primitives of the coarse 

underlying model.  To obtain correct silhouettes we render the bounding box of 

each relief tile (Figure 3.31, left).  For every pixel the eye ray is transformed to 

the coordinate system of the current relief tile and intersection proceeds as 

before.  World space z is computed at the intersection for correct z-buffering with 

the rest of the scene and for casting and receiving correct shadows.  Shadows 

could be computed by shooting a second ray from the intersection to the light 

source and intersecting it with the relief texture.  We prefer to use a conventional 

shadow map such that the relief surface casts and receives shadows from other 

objects and from other relief tiles. 

Occlusion camera relief textures capture complex objects in a single layer.  

Figure 3.31, right shows that a conventional relief texture misses the wheels and 

severely under-samples the sides of the car.   

 

Figure 3.32.  Short relief example. 
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Figure 3.33.  Comparison of the quality of reflections between raytracing and the 

occlusion camera.  Our method (left) compares favorably to raytracing (right). 

3.5.2.4. Results and Discussion 

3.5.2.4.1. Quality 

Occlusion camera depth images enable quality reflections, refractions, and relief 

texture mapping.  Figure 3.33 shows that the method achieves results 

comparable to ray tracing.  The main limitations of the approach are as follows. 
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Figure 3.34.  Visualization of the samples stored in a planar pinhole camera 

image to those of an occlusion camera image.  The SPOC depth image (right) 

store far more samples than the PPC (left) resulting in a higher-quality 

approximation. 

Absent self-reflection 

Although the method could, in principle, support self-reflections by also 

intersecting the reflected rays with a depth image of the reflector, the additional 

intersection is probably a price interactive applications are not willing to pay.  

Coarse silhouettes 

An SPOC depth image does not sample the entire object it replaces.  The 

sampled area ends with a jagged edge when the SPOC rays are tangential to the 

replaced geometry (Figure 3.34).  When the jagged edge is exposed, the 

silhouette of the reflection becomes coarse.  One possible solution is to smooth 

the edge as a pre-process, an approach that precludes dynamic scenes.  Instead 

we alleviate the problem at run time by alpha blending the intersection sample 

with greater transparency when the SPOC ray becomes tangential to the 

sampled surface. 
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Undersampling 

Like all sample-based methods, the quality of the results obtained with occlusion 

camera depth images is contingent upon adequate sampling.  The SPOC 

sampling rate is uniform and controllable. 

Missing samples:  The most visible artifacts in occlusion camera relief texture 

mapping are caused by samples still missing from the relief texture due to 

residual occlusions.  The rear bumper of the car shown in Figure 3.31 occludes 

some of the car body in the relief texture, which causes the shimmering “rubber 

band” surface.  One solution is to modify the car model to reduce the distance 

between the bumper and the body of the car by pushing the bumper in or by 

thickening the bumper.  Another solution is to encode the bumper in a second 

relief texture layer. 

3.5.2.4.2. Performance 

The timing information reported here was collected on a 3.4 GHz Intel Xeon PC 

with 2 GB of RAM and an nVidia 8800 Ultra card.  An important performance 

  

Figure 3.35.  Visualization of the workload for calculating a reflection.  Diffuse 

teapot reflected in body of large teapot (left) and visualization of number of 

intersection steps per pixel (right).   
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factor is the number of steps taken along the projection of the ray, which we 

analyzed for reflections. 

We take coarse steps first and perform a fuzzy intersection of the coarse ray 

segment with the occlusion camera depth map.  If the two endpoints project at 

unoccupied locations or if the coarse ray segment clearly does not intersect the 

impostor depth map, the coarse segment is trivially rejected.  Coarse segments 

are refined by performing fine steps of 1, ½, or ¼ depth image pixels.  Figure 

3.35 illustrates the number of steps for a 5122 SPOC depth image, a 6 pixel 

coarse step, and a ¼ pixel fine step.  More steps are needed when the reflected 

ray narrowly misses the teapot, which causes the fuzzy test to return a false 

positive.  The average number of steps is 48 per output pixel, including both 

coarse and fine steps.  For fine steps of 1 and ½ pixels the average number of 

steps is 22 and 31, respectively.  These numbers do not account for pixel 

processor idling due to SIMD processing constraints.  Figure 3.36 shows 

reflection silhouette quality for various fine step sizes.  

Performance depends on output image resolution and on the fine step size as 

shown in Table 3.2.  Performance was measured on a typical path for the scene 

shown in Figure 3.25.  Eight sample multi-sampling anti-aliasing (8x MSAA), a 

5122 SPOC depth image, and a coarse step of 6 pixels were used.  For an output 

resolution of 640x480, with 8x MSAA, the average frame rate for SPOC depth 

   

Figure 3.36.  Silhouette detail with fine steps of 1, ½, and ¼ pixels. 
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images of resolution 1282, 2562, 5122, and 1,0242, is 55.8, 36.6, 26.5, and 

16.1fps, respectively.  For coarse steps of 3, 6, 9, and 12 texels, the average 

frame rates are 18.2, 31, 37.2, and 39.8 fps, respectively.  The only feature thin 

enough to be affected by the coarser steps is the tip of the spout.  For a 

sequence where the SPOC depth image is recomputed on the fly, the average 

frame rates are 22 and 17.3 fps for no anti-aliasing and 16x MSAA, respectively. 

Table 3.2.  Frame rate variation with output resolution and fine step size.  This 

data is for the scene in Figure 3.25. 

Resolution 640x480 800x600 1,024x768 

Fine 1 1/2 1/4 1 1/2 1/4 1 1/2 ¼ 

Average 26.5 20.7 15 20.9 16.5 11.6 15.2 11.8 8 

Minimum 18 14 8 14 10 4 10 8 6 

Maximum 54 46 36 48 15 34 40 34 28 

 

We construct occlusion camera relief texture maps with an SPOC and the 

discussion of performance of ray intersection provided above in the context of 

reflections still applies.  For Figure 3.26 the overall performance, including 

shadow mapping, is 14 fps for the 40 cars and 18 fps for the 60 barrels example.  

Output resolution is 640x480 and relief texture resolution is 5122.  For 20, 10, 

and 1 car performance is 26, 51, and 219 fps, respectively.  All of the examples 

shown used tall relief which implies long ray projections.  For scenes with short 

relief performance is even higher.  For example, for 160 cars half the size (Figure 

3.32) performance is 46 fps. 

3.5.3. The Soft Shadow Occlusion Camera [105] 

The most common approach for generating shadows in interactive applications is 

shadow mapping.  Shadow mapping has the advantage of being a very efficient 
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method for generating shadows, but it has some serious disadvantages as well.  

The first problem is that the uniform sampling of a shadow map can cause 

aliasing effects on the output image.  More importantly, from the occlusion 

camera perspective, a shadow map returns a binary in-or-out of shadow for any 

given 3-D point.  This limits shadows to only hard shadows. 

The hard shadow assumption means that all light sources are infinitely small 

points.  In reality, light sources have some non-zero area to them.  This non-zero 

area produces a shadow transition region, known as the penumbra, from fully in 

to fully out of shadow.  This limitation is caused by the use of the PPC which only 

captures a single viewpoint for the shadow map.  

To address this limitation, Mo et al [105] adapted the DDOC to the application of 

soft shadows.  They did so by replacing the PPC in the shadow map with a 

DDOC.  Since the DDOC captures samples visible from a locus of viewpoints, it 

would follow that the DDOC used in a shadow map would represent a light 

source with a non-zero area. 

3.5.4. Image Warping for Compressing and Spatially Organizing a Dense 

Collection of Images 

Computer graphics applications such as telepresence, virtual reality, and 

interactive walkthroughs require a 3-D model of real-world environments.  

Students can “visit” famous historical sites, such as museums, temples, castles, 

battlefields, and entire history rich cities; archeologists can capture excavation 

sites as they evolve over time; soldiers and fire fighters can train in safe 

simulated environments; real estate agents can show potential buyers the 

interiors of homes for sale via the Internet; and, people all over the world can 

enjoy virtual travel and multi-player 3-D games.  Thus, a growing desire exists for 

methods which can efficiently capture important and visually stunning 

environments.  
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In recent years, image-based rendering (IBR) approaches have addressed this 

problem [1, 7, 19, 53, 84, 100, 102, 145].  They do so by using the plenoptic 

function directly resampling images to generate new views, thus avoiding the 

need for a detailed geometric model.  

IBR techniques require a large collection of images that must be efficiently stored 

and accessed.  In particular, for interactive walkthroughs image access cannot 

be limited to coincide with the capture paths, but instead requires access along 

arbitrary viewpoint paths.  Furthermore, disk-to-memory bandwidth limitations 

require algorithms that reduce both the size of the images on disk and the 

amount of data that must be transferred to main memory as a virtual observer 

navigates through a captured 3-D environment. 

Traditional compression techniques do not provide both access flexibility and full 

exploitation of data redundancy.  Image compression, such as JPEG [160], 

JPEG2000 [65], and 2-D wavelets [158] exploit intra-image redundancy to reduce 

individual image sizes but do not take advantage of inter-image redundancy.  

Video compression achieves a significant improvement in overall compression by 

encoding sparse reference images and using motion-estimation algorithms to 

determine the coherence for interpolation between reference images (e.g., 

MPEG [82]).  However, motion-estimation is expensive and is intended for pre-

determined linear sequences of images, making it ill-suited for image access 

along arbitrary viewpoint paths. 

We propose a spatial image hierarchy combined with a model-based 

compression algorithm that provides quick access to images along arbitrary 

viewpoint paths during interactive walkthroughs and enables efficient 

compression of high-resolution images whose centers of projection (COPs) 

irregularly sample a plane (Figure 3.37).  Specifically, our method arranges 

reference images and residual images into a binary tree.  A captured image is 

extracted via a sequence of image warping operations.  Each operation warps a 



 

 

reference image to the viewpoint of a residual image and the two are added 

together. 

user

of only a dozen

the translation between the two viewpoints and provides an inexpensive but 

accurate mapping from the reference to the residual image. 

the size of the residual images by employ

(OCRIs)

well as samples likely to become visible from nearby viewpoints.

instead of regular images produces more compact residuals whe

occur and thus may achieve improved overall compression.

Figure 

a s

Residual images primarily account for surfaces that are visible from the viewpoint 

of the residual but not from the reference viewpoint. 

scenes, even small viewpoint translations disocclude many surfaces that are not 

sampled in the reference image.

 

 

reference image to the viewpoint of a residual image and the two are added 

together.  We eliminate the need for costly motion estimation by using a simple 

user-supplied geometric proxy of the environment. 

of only a dozen

the translation between the two viewpoints and provides an inexpensive but 

accurate mapping from the reference to the residual image. 

the size of the residual images by employ

(OCRIs).  These images store samples visible from the reference viewpoint as 

well as samples likely to become visible from nearby viewpoints.

instead of regular images produces more compact residuals whe

occur and thus may achieve improved overall compression.

Figure 3.37.

a spatial image hierarchy combined with a compression 

warping and coherence to provide quick efficient image access for IBR 

Residual images primarily account for surfaces that are visible from the viewpoint 

of the residual but not from the reference viewpoint. 

scenes, even small viewpoint translations disocclude many surfaces that are not 

sampled in the reference image.

reference image to the viewpoint of a residual image and the two are added 

We eliminate the need for costly motion estimation by using a simple 

supplied geometric proxy of the environment. 

of only a dozen polygons approximating the environment, helps compensate for 

the translation between the two viewpoints and provides an inexpensive but 

accurate mapping from the reference to the residual image. 

the size of the residual images by employ

These images store samples visible from the reference viewpoint as 

well as samples likely to become visible from nearby viewpoints.

instead of regular images produces more compact residuals whe

occur and thus may achieve improved overall compression.

.  Diagram of the system 

patial image hierarchy combined with a compression 

warping and coherence to provide quick efficient image access for IBR 

Residual images primarily account for surfaces that are visible from the viewpoint 

of the residual but not from the reference viewpoint. 

scenes, even small viewpoint translations disocclude many surfaces that are not 

sampled in the reference image.

reference image to the viewpoint of a residual image and the two are added 

We eliminate the need for costly motion estimation by using a simple 

supplied geometric proxy of the environment. 

polygons approximating the environment, helps compensate for 

the translation between the two viewpoints and provides an inexpensive but 

accurate mapping from the reference to the residual image. 

the size of the residual images by employ

These images store samples visible from the reference viewpoint as 

well as samples likely to become visible from nearby viewpoints.

instead of regular images produces more compact residuals whe

occur and thus may achieve improved overall compression.

Diagram of the system 

patial image hierarchy combined with a compression 

warping and coherence to provide quick efficient image access for IBR 

Residual images primarily account for surfaces that are visible from the viewpoint 

of the residual but not from the reference viewpoint. 

scenes, even small viewpoint translations disocclude many surfaces that are not 

sampled in the reference image.  

reference image to the viewpoint of a residual image and the two are added 

We eliminate the need for costly motion estimation by using a simple 

supplied geometric proxy of the environment. 

polygons approximating the environment, helps compensate for 

the translation between the two viewpoints and provides an inexpensive but 

accurate mapping from the reference to the residual image. 

the size of the residual images by employing occlusion camera reference images

These images store samples visible from the reference viewpoint as 

well as samples likely to become visible from nearby viewpoints.

instead of regular images produces more compact residuals whe

occur and thus may achieve improved overall compression.

Diagram of the system used to compress images.  The system 

patial image hierarchy combined with a compression 

warping and coherence to provide quick efficient image access for IBR 

applications.

Residual images primarily account for surfaces that are visible from the viewpoint 

of the residual but not from the reference viewpoint. 

scenes, even small viewpoint translations disocclude many surfaces that are not 

 Furthermore, the disocclusions are not grouped 

reference image to the viewpoint of a residual image and the two are added 

We eliminate the need for costly motion estimation by using a simple 

supplied geometric proxy of the environment.  The proxy, which may consist 

polygons approximating the environment, helps compensate for 

the translation between the two viewpoints and provides an inexpensive but 

accurate mapping from the reference to the residual image. 

ing occlusion camera reference images

These images store samples visible from the reference viewpoint as 

well as samples likely to become visible from nearby viewpoints.

instead of regular images produces more compact residuals whe

occur and thus may achieve improved overall compression.

used to compress images.  The system 

patial image hierarchy combined with a compression 

warping and coherence to provide quick efficient image access for IBR 

applications. 

Residual images primarily account for surfaces that are visible from the viewpoint 

of the residual but not from the reference viewpoint. 

scenes, even small viewpoint translations disocclude many surfaces that are not 

Furthermore, the disocclusions are not grouped 

reference image to the viewpoint of a residual image and the two are added 

We eliminate the need for costly motion estimation by using a simple 

The proxy, which may consist 

polygons approximating the environment, helps compensate for 

the translation between the two viewpoints and provides an inexpensive but 

accurate mapping from the reference to the residual image.  We further reduce 

ing occlusion camera reference images

These images store samples visible from the reference viewpoint as 

well as samples likely to become visible from nearby viewpoints.  Warping OCRIs 

instead of regular images produces more compact residuals whe

occur and thus may achieve improved overall compression. 

used to compress images.  The system 

patial image hierarchy combined with a compression scheme that uses image 

warping and coherence to provide quick efficient image access for IBR 

Residual images primarily account for surfaces that are visible from the viewpoint 

of the residual but not from the reference viewpoint.  In the cas

scenes, even small viewpoint translations disocclude many surfaces that are not 

Furthermore, the disocclusions are not grouped 

reference image to the viewpoint of a residual image and the two are added 

We eliminate the need for costly motion estimation by using a simple 

The proxy, which may consist 

polygons approximating the environment, helps compensate for 

the translation between the two viewpoints and provides an inexpensive but 

We further reduce 

ing occlusion camera reference images

These images store samples visible from the reference viewpoint as 

Warping OCRIs 

instead of regular images produces more compact residuals when disocclusions 

used to compress images.  The system use

scheme that uses image 

warping and coherence to provide quick efficient image access for IBR 

Residual images primarily account for surfaces that are visible from the viewpoint 

In the case of non-trivial 

scenes, even small viewpoint translations disocclude many surfaces that are not 

Furthermore, the disocclusions are not grouped 

89 

reference image to the viewpoint of a residual image and the two are added 

We eliminate the need for costly motion estimation by using a simple 

The proxy, which may consist 

polygons approximating the environment, helps compensate for 

the translation between the two viewpoints and provides an inexpensive but 

We further reduce 

ing occlusion camera reference images 

These images store samples visible from the reference viewpoint as 

Warping OCRIs 

n disocclusions 

 

uses 

scheme that uses image 

Residual images primarily account for surfaces that are visible from the viewpoint 

trivial 

scenes, even small viewpoint translations disocclude many surfaces that are not 

Furthermore, the disocclusions are not grouped 



 

 

90 

in one contiguous region of missing samples, but are rather scattered throughout 

the scene.  Therefore, when regular reference images are used, residual images 

have to compensate for a substantial number of samples and are difficult to 

compress. 

An OCRI is built using a virtual non-pinhole camera model that “sees” around 

occluders to gather samples that are hidden but close to the edge of their 

occluder and therefore are likely to become visible even for small viewpoint 

translations.  For synthetic imagery, a virtual camera model is implemented using 

graphics hardware.  For real-world imagery, the proxy is used in place of the 

synthetic model to support creating a virtual camera model.  In both cases, 

OCRIs, like regular depth images, have a single layer and therefore share the 

advantages of bounded number of samples, implicit connectivity, and efficient 

incremental processing.  When disocclusions are present, these additional 

samples reduce the number of missing samples for which the residual has to 

compensate, producing residual images with less energy. 

In experiments with environments of 2,000 to 10,000 omnidirectional images, 

1,0242 pixels each, our method gives nearly a factor of a 100-to-1 compression 

without significant loss in quality.  This work extends the previous work [5] by 

adding the support of a model-based compression algorithm based on OCRIs. 

3.5.4.1. Previous Work 

Several image-based rendering systems use schemes for organizing and 

compressing images.  For example, the Lightfield [84] and the Lumigraph [53] 

form flat hierarchies of images captured in front of an object of interest.  The 

original Lightfield paper exploits image redundancy by using vector quantization 

[50] followed by Lempel-Ziv [177] encoding.  For interactive rendering, the entire 

dataset is first decoded using Lempel-Ziv followed by random image 
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decompression using the vector quantization codebooks.  Vector quantization 

achieves only about 6:1 to 24:1 compression for their datasets. 

Subsequently, more elaborate compression algorithms have been proposed for 

Lightfields.  Magnor and Girod [97] describe a DCT-based coder for regular 

Lightfields using datasets of 1,024 images.  The images are arranged into a 

quad-tree that encodes images as either I- or P-frames.  Images of 2562 pixels 

are decoded and reconstructed interactively.  Optionally, disparity information 

can be estimated and used to further compress images, although interactive 

performance is lost.  For display, all I-frames and residuals are decoded and 

stored in memory.  This approach achieves 100:1 to 1,000:1 compression 

depending on desired quality and scene characteristics. 

Peter and Strasser [118] describe a wavelet-based compression algorithm for the 

same Lightfield datasets.  A three-layer cache system achieves interactive rates 

(15-20 fps) for 2562 pixel images – upon too many cache misses or without the 

cache, performance is reduced to 3 fps.  This system demonstrates up to 100:1 

compression. 

Gotz et al. [54] describe a novel image representation for cylindrical projection 

images.  Their representation exploits spatial coherence and rearranges the 

columns of pixels.  Columns that correspond to the same world-space viewing 

direction are grouped and stored either as index columns or as residual columns.  

Each column is coded using a one-dimensional wavelet and the coefficients are 

quantized and stored using a Huffman code.  Overall they achieve compression 

performance similar to JPEG (15-20x) but, unlike JPEG, are able to incrementally 

code new columns and efficiently decode individual columns. 

Wilson et al. [167] create a system for interactive walkthroughs of synthetic 

models that used spatially encoded video to represent image-based impostors 

[6].  They decompose the model into a regular grid of rectangular viewing cells.  
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For viewpoints inside a cell, they represent the geometry outside the cell by 

mapping pre-computed images of the far field onto the interior walls of the cell.  

Their scheme exploits the redundancy between the images of neighboring cells.  

Using MPEG nomenclature, cells are classified as either I-cells or B-cells.  An 

image-based impostor of a B-cell references two images from the nearest two I-

cells.  Using depth information obtained from the synthetic model, they compute 

motion vectors and code the images using MPEG.  To access a coded image at 

runtime in constant time, they store the bit stream offsets to each image in a 

globally accessible array.  The average compression ratio for their dataset of 

22,000 images of 5122 pixels is 48:1. 

In contrast to previous work, our goal is a method to compress a large number of 

high-resolution images of a real-world environment irregularly sampled over a 

plane in a manner that it yields high compression performance, is highly scalable, 

uses single layer images, and permits fast image access along arbitrary 

viewpoint paths.  Our OCRIs reduce disocclusions and are automatically created 

using a fine-grain distortion method.  Reference and residual images can be 

processed, stored, and decoded using graphics hardware already present on 

most computers.  None of the systems described above support all these 

features. 

Our image hierarchy and compression scheme uses the dense datasets 

captured with the Sea of Images system [8].  This work replaces the difficult 

computer vision problems of 3-D reconstruction and surface reflectance modeling 

with the easier problems of motorized cart navigation, dense sampling, and 

working-set management. 

3.5.4.2. Image Hierarchy 

Our algorithm builds a tree that exploits image coherence.  This section 

describes how we build the image hierarchy using a binary tree, how reference 
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and residual images are created and encoded in the tree, and how the original 

images are extracted and decoded from the image hierarchy.  Figure 3.38 

provides a summary of the entire process. 

Binary tree construction 

• Create a node for each image. 

• Calculate Delaunay triangulation of the centers-of-projection of the 

images. 

• Build the tree using a priority queue and edge collapse operations. 

Image encoding 

• Use image warping to exploit inter-image redundancy. 

• Use an optimization process to further reduce image energy. 

Image extraction and decoding 

• Extract images in either logarithmic or constant time, at the expense of 

compression performance. 

Figure 3.38.  Summary of the process for building an image hierarchy. 

3.5.4.2.1. Binary Tree Construction 

We incrementally build the tree by collapsing the edges of a Delaunay 

triangulation of the centers-of-projection (COPs) of all the original images.  First, 

a node is created for each image.  Second, the edges of the Delaunay 

triangulation are placed into a priority queue.  Third, the next highest priority edge 

is collapsed until no more edges remain. 

There are several possible metrics for edge priority.  To maximize compression, 

edges should be processed in an order that maximizes inter-image coherence.  
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One metric is the energy of the image difference between the two images of the 

edge.  Image energy is estimated by calculating the total absolute pixel 

luminosity of the residual image or by measuring the size of the intra-coded 

compressed residual image.  However, both these measures are computationally 

expensive. 

A simpler, but effective, approximation is to use the Euclidean distance between 

the images (i.e., the edge length) as the metric of image similarity.  This is based 

on the assumptions that nearby images have smaller image differences than 

those farther apart, and therefore should be processed first.  This metric is very 

fast to evaluate, requiring only a distance calculation, and our experiments prove 

it gives almost as good a compression performance as the more costly image 

energy metric. 

Using each edge and its associated node pair in priority order, we perform a half-

edge collapse operation to convert the node pair into children of a new common 

parent node.  This operation produces three types of tree nodes: I-node, P-node, 

and N-node.  The new reference image parent node (I-node) is placed at the 

same spatial location as one of its children and contains the image formerly 

stored with that child.  The child node at that location (N-node) simply becomes a 

pointer to the parent.  The other child node (P-node) becomes a residual image, 

the difference between the original child and the I-node image warped the 

viewpoint of the child node.  Finally, the nodes are locally re-triangulated and the 

queue is updated with the new edges, while the edges that no longer exist are 

removed from the queue.  After all edges have been processed, the resulting 

forest of trees joins to form a single tree for the entire original image set (Figure 

3.39). 
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Figure 3.39.  The tree building process begins from a set of five images.  In this 

didactic example, the images are arranged in a line.  From (a) to (c), image pairs 

(edges) are collapsed, producing I-nodes, P-nodes, and N-nodes. 

3.5.4.2.2. Creating Reference and Residual Images 

The tree-building process determines a set of reference and residual images that 

we must create.  Given such single-layer images, our algorithm can use any 

image coding method, such as DCT-based compression (e.g., JPEG) or 

Wavelet-based compression for the images at each node in the binary tree.  For 

JPEG, we use the quality parameter to set the amount of quantization, and thus 

determine the amount of loss.  We select a lower quality value for residual 

images, since they contain less information and thus contribute less to overall 

quality. 

There are several ways to reduce the energy in the residuals beyond using 

straightforward image differencing.  We want to identify pixel correspondences 

and use this information to lower the energy in the residuals.  Loosely, we 

categorize existing approaches into those that infer pixel correspondences using 

pixel search algorithms and those that require 3-D information of the scene.  

Motion estimation, typically used in video compression, uses search algorithms 

to find for a block of pixels in an image A that have a similar block of pixels in an 

image B.  However, such search algorithms are very expensive computationally. 

Proxy-Warped Reference Images 

We reduce residual image energy using approximate 3-D scene information and 

warping the reference image to the COP of the residual image prior to image 
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differencing.  This approach uses a geometric proxy to project a common set of 

3-D point features onto both image planes, establishing a feature-based 

correspondence.  Then, the features in one image are triangulated and a 

projective mapping warps the pixels of each triangle to their corresponding 

position in the other image.  The warp operation may be performed by software 

or, as in our implementation, by exploiting texturing hardware that is commonly 

available on graphics cards. 

The algorithm generates 3-D features by subdividing the polygons of the proxy 

and using the vertices as features.  In order to obtain an approximately even 

distribution of features in image space, the algorithm adaptively subdivides proxy 

polygons according to the size of their screen-space projection.  Polygons near 

the COP are subdivided more than polygons farther away.  Pre-computing and 

storing features for every image pair would increase the amount of data to store, 

so we choose to generate features on the fly. 

It is worth mentioning that a ray casting approach which creates set of 2-D 

features in a first image and finds the corresponding locations in a second image 

might obtain a better feature distribution, but it also introduces several 

disadvantages.  In particular, features are not necessarily created along edges 

and corners of the proxy (i.e., places that often correspond to sharp visual 

change) and ray casting cannot easily be adapted to hardware. 

Occlusion Camera Reference Images 

To further reduce the size of the residuals, we need to have samples available 

for the surfaces that may become visible after the image warp.  In general, the 

energy in the residual images comes from three main sources.  One is due to the 

view dependent appearance of scene surfaces.  For example, a highly specular 

surface will look different in images with different COPs, and although the 

mapping induced by the proxy correctly finds the same surface point in both 

images, it does not help reducing the color difference.  Another source of residual 
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difference is the approximate nature of the proxy; the small geometric features 

ignored by the proxy do create small inconsistencies between the warped 

reference image and the image to be compressed.  A third and large source is 

due to disocclusion errors.  The image to be compressed samples some surfaces 

that are not visible from the reference viewpoint.  Simply using the reference 

image to recreate a second image produces disocclusion errors.  Compensating 

for disocclusion errors in the residual image does not lend itself to good 

compression.  Thus, we reduce the size of the residual images by alleviating 

disocclusion errors.  Instead of regular pinhole camera reference images we use 

occlusion camera reference images (OCRIs), which store additional samples to 

prevent disocclusion errors.  The OCRI has a single layer.  The visible samples 

are “squeezed” together in the neighborhood of depth discontinuities to make 

room for barely hidden samples.  The OCRI does not store samples for all 

surfaces; samples that are clearly hidden and are unlikely to become visible in 

nearby views are discarded. 

The depth discontinuity occlusion camera is used for this implementation.  Its 

construction was described in Section 3.2.  The only difference here from the 

previous description is that the scene is the proxy model rendered with projective 

texture mapping for color. 

Warping Optimization 

For each image differencing operation, we optionally adjust the registration of the 

proxy with the images so as to minimize the energy of the residual image.  This 

optimization attempts to reduce errors introduced by camera pose estimation as 

well as attempts to compensate for the approximate nature of the proxy.  The 

optimization process uses the COP A of a first image IA and the COP B of a 

second image IB to initialize the vector V=B-A, containing the translation and 

rotation offsets from image IA to IB.  We minimize the energy of the residual 

image between image IA warped to position A+V and image IB.  A 
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multidimensional minimization method (e.g., Powell’s method [131]) is used to 

find an optimal vector V. 

3.5.4.2.3. Extracting and Decoding Original Images 

In an IBR application we need to extract an arbitrary image sequence from the 

original set of M images.  We find the corresponding leaf node, and trace the 

links up to the I-node ancestor.  Then starting with the I-node, we reverse the 

path following the P-node or N-node branches, adding the P-node images to the 

I-node until we reach the leaf-node.  This procedure is applied recursively until 

the tree is traversed down to the node of the desired image. 

There are several variants to the tree building process that yield different original 

image extraction methods.  We present three such methods here and explore 

their tradeoffs in the results section. 

Root-based Extraction 

A first extraction method always refers to the root node and is the most 

straightforward one.  It requires at most an W�XYZ [� sequence of image 

additions.  For this method, the root of the tree is the only I-node and all other 

nodes are either P-nodes or N-nodes.  Since the root I-node must be accessed, 

the number of image additions required to extract an arbitrary image is equal to 

the height of the tree.  Unfortunately, the accumulation of a long sequence of 

incremental image residuals may result in a large reconstruction error.  This 

problem can be mediated by creating residual images top-down instead of 

bottom-up, ensuring that only captured images are used to calculate image 

residuals.  In order to create residual images top-down, we must first create a 

tree skeleton which determines the types of the nodes and the tree connectivity.  

Such a tree skeleton is easily constructed if we use a metric for edge collapse 

priority that depends on the Euclidean distance between the images and not on 

image energy. 
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Indirect I-node-based Extraction 

A second extraction method reduces decompression time, at the expense of 

storage, by decreasing the maximum number of image additions.  This option 

forces I-nodes to be distributed throughout the tree, akin to forced intra-coding in 

MPEG.  This distribution may be proportional to the residual image energy 

(adaptive) or set by a pre-defined constant.  For example, if during an edge 

collapse the residual image energy is greater than a pre-defined threshold or the 

distance between a newly created I-node and the farthest P-node descendant is 

greater than a pre-defined constant, we change the newly created P-node to an 

I-node. 

Direct I-node-based Extraction 

A third image extraction method further reduces the number of image additions to 

exactly one in all cases (i.e. constant time) by defining the residual image of a P-

node directly relative to the closest I-node up the tree.  To build such a tree, we 

either have knowledge of which nodes will be I-nodes or make residuals after 

creating the tree skeleton. 

3.5.4.3. Implementation 

We have implemented our algorithms on a Pentium IV 3.0 GHz system equipped 

with a modern graphics card.  We use JPEG compression both for the I- and P-

nodes, adjusting the quality setting to achieve the desired quantization.  We use 

an OpenGL programming interface and the graphics subsystem to achieve 

image differencing and image addition at interactive rates.  Both operations are 

performed using multiple-pass texture mapping operations. 

Proxy-based reference image warping, as described previously, is implemented 

using OpenGL.  To determine the set of features for reconstructing an image 

using an I-node and P-node image pair, we recursively subdivide proxy polygons 

on the main CPU for the COP of either of the images.  Using a low resolution 
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frame buffer, we render the proxy polygons into the z-buffer and then render the 

proxy vertices into the color buffer encoding unique vertex IDs in the color 

channels.  Next, we read back the frame buffer and determine which vertices are 

visible.  We compute the location of the same features in the other image.  Next, 

we load the two images into texture memory.  We render the triangular mesh for 

the I-node image using its feature positions in image space as texture 

coordinates, but render the mesh using the vertex coordinates of the P-node 

mesh to create the warped image.  Finally, the reconstructed image is obtained 

by adding the signed P-node residual image to the warped I-node image. 

Like in the case of a regular reference image, each pixel of an OCRI defines a 3-

D point with color and the regular 2D array of samples implicitly defines a triangle 

mesh.  The OCRI is efficiently warped by rendering the OCRI mesh (or proxy) 

from the novel view in hardware. 

The complexity of the image warp operation is proportional to the size of the 

images.  In order to reduce the complexity, we can optionally reduce the size of 

the warped images.  This reduction in image resolution improves runtime 

performance but shifts more energy into the residual image, resulting in 

diminished compression performance. 

Table 3.3.  Summary of datasets: number of images, raw size, and average 

center-of-projection spacing. 

Dataset Number of Images Raw Avg. COP Spacing 

Museum 9832 30.9 GB 2.2 inches 

Office 3475 10.9 GB 0.7 inches 

Library 1947 6.1 GB 1.6 inches 
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images covering 30 square feet.  Finally, the third dataset, Library, contains 

1,947 images covering 120 square feet.  To create the proxy for each 

environment, we obtain a coarse floor plan of each environment and extrude the 

walls to construct a 3-D model of about a dozen polygons each.  Floor and 

ceiling surfaces are approximated with two large planes.  On average, we are 

able to extract and reconstruct from proxy-warped images 1,0242 pixel-resolution 

images at a rate of 15 to 20 images per second. 

3.5.4.4.1. Hierarchy Alternatives 

The hierarchy, as described, supports either residual images that are relative to 

their immediate ancestor in the tree (e.g. indirect I-node-based coding) or 

residual images that are directly relative to the closest I-node up the tree (e.g. 

direct I-node-based coding).  The former yields better compression but more 

expensive image extraction.  The latter provides constant image extraction cost 

but less compression performance.  The tradeoff also depends on the spacing 

between I-nodes in the tree.  

To better understand the aforementioned tradeoff, Figure 3.40 (a-d) show the 

compression performance for various maximum I-node spacings (i.e., maximum 

levels of the tree between I-nodes) using proxy-warped reference images and 

both residual-image strategies.  Since none of the compression trees has more 

than 32 levels, the examples at an I-node spacing of 32 are those having a single 

I-node for the entire dataset.  The examples at I-node spacing of 0 represent 

trees where every node is an I-node (this configuration is effectively the same as 

compressing each image as an independent JPEG image).  The average 

preprocessing time for datasets, such as those in Figure 3.40, is approximately 1 

second per image.  This includes building the tree, computing residual images, 

and intra-coding images. 
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a)   b) 

c)   d) 

e)   f) 

Figure 3.41.  An example occlusion camera reference image usage.  Top: Planar 

re-projection of an OCRI for the Museum environment (left) and the desired 

image to reconstruct (right).  Middle: OCRI (left) and standard reference image 

warped to the desired image viewpoint with the missing samples colored purple.  

Bottom: Residual for the warped OCRI (left) and standard reference image (left) 

with missing samples are highlighted in green.  Notice the large quantity of 

missing samples that the standard reference image residual has to store. 

Figure 3.40, top, shows the compressed dataset sizes against I-node spacings.  

Other compression parameters are kept constant so the variance observed is 

solely due to changing I-node spacings.  Fewer I-nodes generally yields better 

compression at the expense of either quality or image extraction performance. 

However, residual images directly relative to their I-node tend to vary in size 

proportional to their distance from the I-node (Figure 3.40d).  They also tend to 

maintain similar image quality although at potentially greater cost in terms of 

space.  As evidenced in Figure 3.40b, the best tradeoff between residual image 

size and number of I-nodes occurs between I-node spacings of 4 and 8. 
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a)

 

d)

 

g) 

 

b)

 

e)

 

h) 

 

c)

 

f)

 

i) 

 

j)  

k)   

l)  

Figure 3.42.  Examples of images compressed by several ratios.  Images (a-c) 

are of the Museum environment.  Images (d-f) are of the office environment.  

Images (g-i) are of the library environment.  The original omnidirectional images 

are shown in (a, d, g).  For our datasets, we able to compress to 83:1 (b), 100:1 

(e), and 69:1 (h) without significant loss in quality.  Further compression slowly 

exhibits artifacts such as those visible at 121:1 (c), 149:1 (f) or 120:1 (i).  Image 

(j) was reconstructed using OCRIs and the resulting more compact difference 

images.  Image (k) highlights the area of the difference image for proxy-warping 

which needs to store the samples of disoccluded surfaces in image (k).  Image (l) 

shows the OCRI difference image lacking those samples. 
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In summary, I-node spacings between 4 and 8 yield a reasonable tradeoff 

between reconstruction time, reconstruction quality, and compression 

performance.  Using residual images directly relative to their I-node produces a 

more consistent image quality although at the expense of compression.  Thus, in 

rest of the results section we use an I-node spacing of 4 and direct I-node-based 

coding. 

3.5.4.4.2. Compression Analysis 

Table 3.4 breaks down how each part of the algorithm contributes to the total 

compression.  As can be observed in the table, approximately one third of the 

total compression comes from each of intra-coding (35%), proxy-based image 

warping (35%), and image-warping optimization (23%).  Another source of 

compression (approximately 7%) is adaptive quality settings for the residual 

images based on image energy.  When using intra-coding images without 

adaptive settings, all images are coded at fixed quality settings.  In particular, we 

fix I-node images to be at quality setting 75 (default for JPEG) and residual 

images to be at quality setting 65. 

To adaptively choose JPEG quality settings, we calculate the image energy 

range for the residuals and use interpolation to obtain the quality setting (this is 

similar to rate-control in video coding).  The energy range is computed as the 

mean energy plus/minus its standard deviation.  Through experimentation, we 

found that compressing low-energy residuals 30% more aggressively yields good 

results. 

The error function for the image warping optimization requires computing residual 

images and their average energy value.  Since the error function is called many 

times per optimization and one optimization is performed per residual, this step is 

computationally expensive.  To reduce the preprocessing time, we use 2562 

resolution residuals during the optimization.  The translation and rotation offsets 
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are similar to those obtained using full resolution images but at reduced cost.  On 

average, optimization using proxy-based warping adds 3 seconds to the per-

image preprocessing time.  Using the results of the optimization does not, 

however, affect the runtime decoding performance. 

 

3.5.4.4.3. OCRI Benefit 

Using occlusion camera reference images yields us improved compression 

performance over warping standard reference images whenever disocclusion 

errors are present.  For each I-node of the tree, we create an OCRI by computing 

the distortion map using the proxy and obtain color samples from a neighborhood 

of images surrounding the OCRI.  It takes approximate an additional 3 to 5 

Table 3.4.  Compression contributions as various elements of the algorithm are 

enabled.  Results in this table use residual images relative to I-Nodes and I-Node 

spacings of 4.  The table should be read top-down.  For each environment, we 

show compressed dataset sizes in megabytes and cumulative contributions as 

percentages and ratios.  The percentage/ratio indicates how much of the total 

compression has been achieved thus far. 

 Museum Office Library Average 

Operation Contrib. MB Contrib. MB Contrib. MB Contrib. Ratio 

Raw Data 0% 30929 0% 10931 0% 6128 0% 1:1 

Intra-coding 35% 1559.7 35% 376.4 34% 317.9 35% 23:1 

Proxy image-
warping 

72% 754.8 67% 195.3 72% 148.8 70% 46:1 

Adaptive 
settings 

77% 709.6 77% 169.2 78% 137.8 77% 51:1 

Optimization 100% 538 100% 129.7 100% 106.6 100% 66:1 
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seconds to create each OCRI.  Figure 3.41a shows a planar re-projection of a 

subset of an OCRI for the Museum environment.  (Our current OCRI 

implementation handles only planar projections, so we tile the omnidirectional 

image into planar re-projections and then optionally re-assemble them).  Figure 

3.41b contains the desired destination image.  Figure 3.41c shows how the OCRI 

is warped to the viewpoint of the desired image and is able to fill-in disocclusions.  

Figure 3.41d contains an image from the same viewpoint but warped using 

regular reference images.  Figure 3.41e shows the residual image to be added to 

the OCRI in order to complete the image in Figure 3.41b, while Figure 3.41f is 

the residual image when warping a standard reference image.  The reduced 

number of samples and energy in the OCRI residuals allows us to obtain 

improved compression performance in this example. 

 

Figure 3.43.  A graph showing the tradeoff between compression and quality.  

The tradeoff between compression (in terms of bits-per-pixel) and quality (in 

terms of peak-signal-to-noise-ratio) using proxy-based warping is shown.  

Original images have 24 bpp; thus, 0.68 bpp is equivalent to 35:1 compression 

and 0.16 bpp is equivalent to 149:1 compression. 
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3.5.4.4.4. Coding Performance 

Using the best parameter settings, as previously described, we vary the effective 

compression rate (bits-per-pixel, or bpp) and report in Figure 3.43 the peak-

signal-to-noise-ratio for each of our datasets when using proxy-based warping.  

The higher peak-signal-to-noise-ratio values for the office environment are due to 

the higher image density in that environment (see Table 3.3).  This increase in 

image density creates lower energy residuals. 

For our datasets, we show example reconstructed images for several 

compression ratios, ranging from 35:1 to 149:1, in Figure 3.42.  On average, our 

algorithm can compress images without significant artifacts by a factor of 84-to-1 

(average compression ratio of Figure 3.42b, Figure 3.42e, and Figure 3.42h). 

For the museum environment, our largest dataset, we used OCRIs to yield 

improved compression.  The compression performance, by definition, will be the 

same or better than proxy-based warping depending on the presence of 

disocclusions in the image sequence.  For our simple proxy model, disocclusions 

mostly occur near the kiosk located in the middle of the museum.  For a 

sequence of planar re-projections containing views of this subset of the model 

(similar to Figure 3.41), OCRIs are able to reduce disocclusions and image 

energy.  Using a sequence of 2,000 images facing the kiosk, compressed at low 

to medium compression ratios (35:1 to 83:1), we observed individual OCRI 

difference images that were up to 3.3% smaller and up to 4.4% more compact at 

higher compression ratios (121:1).  Figure 3.42 (j-l) show an image reconstructed 

using OCRIs and a comparison of difference images.  The overall average 

improvement we saw in images containing disocclusions was only about one 

percent.  In our particular environment, the missing samples were often of a 

single color (e.g., white colored surfaces) and thus compress well in the 

difference image – this offsets the maximum gains to be obtained from OCRIs in 

this case. 
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a) 

 

b) 

 

c) 

 

Figure 3.44.  An example of our method compared to MPEG-2.  (a): A portion of 

an original captured omnidirectional image within the Museum environment.  (b): 

The same frame but reconstructed from MPEG-2 coded images such that the 

total compression equals 85:1.  (c): The same frame reconstructed using the 

compression algorithm of this paper with standard reference images.  

Reconstruction uses difference-from-I-nodes, I-node spacing of 5, proxy-based 

image warping, and image warping optimization, yielding 85:1 total compression. 

Notice the improved quality of our reconstruction as compared to the artifacts 

visible in the MPEG-2 frame. 

In Figure 3.44, we compare our compression algorithm to a standard MPEG-2 

encoding of a linearization of the entire image database.  First, we select an 

approximate target compression ratio for our algorithm (e.g., 85:1) and then 

select a bpp setting for an MPEG-2 encoder that yields approximately the same 

overall compression.  Even though we are only using proxy-based warping in this 

example, on average, our algorithm results in better quality images because we 

are able to capitalize on the 2-D nature of the inter-image redundancy, as 

opposed to the linear (1-D) inter-image redundancy in MPEG-2.  Furthermore, 

the proxy model, image warping, and optimization process contribute to our 

superior quality. 
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3.5.5. Three-Dimensional Display Rendering Acceleration 

Conventional 3-D computer graphics applications present the scene to the user 

on a 2-D display.  The approach has at least two fundamental disadvantages.  

First, the system needs to know the view desired by the user.  Interfaces that rely 

on trackers or input devices (e.g. joysticks and keyboards) provide only a crude 

and non-intuitive way for the user to select the desired view.  Second, the output 

image is flat, which deprives the user from the important depth cues of binocular 

stereo vision.  Special goggles or displays can be used to present each eye with 

a different image, but stereo display technologies suffer from disadvantages such 

as limited range of motion, need for strenuous image fusing, and uncomfortable 

eyewear. 

Volumetric 3-D displays hold the promise to overcome these disadvantages.  A 

sculpture of light provides a truly three dimensional replica of the scene of 

interest.  The user naturally selects the desired view by gaze, head motion, and 

walking around the 3-D image.  There is no need for encumbering eyewear, and 

the processes of accommodation and vergence occur naturally.  Although the 

advantages of volumetric 3-D displays have been known for a long time, 3-D 

display technology continues to suffer from fundamental challenges.  One 

challenge is creating an adequate 3-D array of pixels.  The requirements are 

small pixel volume for good spatial resolution, and wide range of intensities, 

colors, and opacities.  A second challenge is achieving satisfactory performance.  

Computing and transferring the 3-D image to the display presently takes 

hundreds of seconds, which is unacceptable for many applications.  

We describe a method to accelerate rendering on volumetric 3-D displays, based 

on adapting the scene level-of-detail before the 3-D image is computed, and 

reducing the number of 3-D image samples that are computed and transferred.  

For example, if the 3-D scene represents Manhattan, a view that maps the entire 

island to the volume of the 3-D display can be safely computed from a coarser 
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representation than a view that only shows Times Square.  Moreover, for a single 

user that is seated or stands in one place, many of the background buildings are 

completely occluded and do not become visible for normal gaze changes and 

head motions.  The hidden buildings can be ignored when computing the 3-D 

image. 

In the case of complex scenes with numerous occlusions, the number of samples 

that remain hidden caused by the interpupillary distance and the translational 

component of head motions is particularly large.  These scenes are also the ones 

that presently require the largest rendering times, so the gain obtained by not 

processing hidden samples is substantial.  Level-of-detail adaptation and 

occlusion culling are classic problems in 3-D computer graphics.  Many 

algorithms have been developed to simplify geometry and to eliminate primitives 

that lie in the shadow of occluders.  However, quickly establishing a small set of 

primitives that is sufficient for a given view remains an open problem. 

A research path in computer graphics known as image-based rendering (IBR), 

models the scene by rendering from pre-computed or pre-acquired reference 

images.  In one variant, the scene is modeled with planar pinhole camera depth 

images (DIs), which are images enhanced with per-pixel depth [102].  The depth 

information allows warping the reference samples to any novel desired view.  A 

DI provides a good level-of-detail solution, which holds for nearby views.   

Unfortunately, the occlusion culling solution of the reference image cannot be 

applied to nearby views.  Even small translations of the viewpoint produce 

disocclusion errors, which are artifacts due to lack of samples for surfaces that 

become visible but were not sampled by the reference DI.  In our context, 

representing the scene with a DI computed from the left eye’s viewpoint 

produces disocclusion errors in the image seen by the right eye. 
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To address this problem we replace the planar pinhole camera with an occlusion 

camera that samples not only surfaces visible in the reference view, but also 

surfaces that are likely to become visible in nearby views.  The resulting 

occlusion camera reference image (OCRI) stores samples that are hidden in the 

reference view but are needed to alleviate disocclusion errors when the view 

translates.  We represent the scene with an OCRI computed for the user’s 

reference view, which is the average of the left and right eye views in the normal 

head position.  Like a regular DI, the OCRI is a single layer representation with 

the advantages of bounded number of samples, implicit connectivity, and efficient 

incremental processing.  Another advantage shared with regular DIs is that 

OCRIs adapt the scene’s level-of-detail to the reference view.  Unlike a regular 

DI however, the OCRI has all samples needed for a continuum of views centered 

at the reference view.  Interpupillary distance and normal head motion do not 

produce disocclusion errors. 

Figure 3.45 through Figure 3.51 illustrate our approach.  Figure 3.45 through 

Figure 3.48 show images computed with our volumetric 3-D display simulator, 

and Figure 3.49 through Figure 3.51 show actual photographs of our volumetric 

3-D display.  Both simulated and real 3-D displays produce spherical images with 

a diameter of 10”.  Figure 3.45 and Figure 3.47 show a depth image (DI) and an 

OCRI constructed from the same viewpoint.  Figure 3.46 shows the DI and OCRI 

from a viewpoint 4” left of the reference viewpoint.  The severe disocclusion 

errors that occur for the DI are alleviated by the OCRI.  Figure 3.48 shows the DI 

and OCRI from a side view.  The OCRI does not sample all surfaces in the 

scene, nor should it.  The OCRI provides occlusion culling by safely discarding 

the samples that are not needed in nearby views.  The OCRI shrinks the 

“shadow” of the bunny.  Figure 3.49 shows reference view photographs of the 3-

D images rendered from the DI, OCRI, and geometric model.  Figure 3.50 and 

Figure 3.51 correspond to Figure 3.46 and Figure 3.48. 
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Figure 3.45.  Depth image. 

 

Figure 3.46.  Images rendered from depth and 

occlusion camera reference images with the 

viewpoint four inches left of reference viewpoint. 

 

Figure 3.47.  Occlusion 

camera reference image. 

 

Figure 3.48.  Images rendered from depth and 

occlusion camera reference images.  Wireframe 

shows spherical display volume. 

3.5.5.1. Prior Work – Three-Dimensional Displays 

Several technologies attempt to go beyond a flat 2-D image.  One approach is to 

use special eyewear to present each eye with a different image.  Polarizing 

glasses, dynamic shutter glasses, or head mounted displays make the image 

appear 3-D by providing the required parallax between the left and right eye 

images.  These technologies are popular with virtual reality applications since the 

synthetic image covers the entire field-of-view of the user, which conveys a 

sense of immersion.  The important limitation is the need of special eyewear. 
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Figure 3.49.  Photographs of images rendered from the reference viewpoint in 

the 3-D display.  3-D images rendered from DI (left), OCRI (middle), and 

original geometric model (right). 

 

Figure 3.50.  Photographs of display 

four inches left of the reference view. 

 

Figure 3.51.  Photographs of the 3-D 

display from a side view. 

 

Autostereoscopic displays [59] produce a 3-D image without the need of special 

eyewear.  Parallax autostereoscopic displays provide different images for the left 

and right eyes using slits [66, 115] or lenslets [36, 63, 99].  The disadvantages 

are reduced resolution and range of supported viewpoints. 

Volumetric displays produce a truly three dimensional image.  One approach is to 

fill space, for example with a stack of transparent LCDs [87].  The approach has 

the disadvantage of limited z resolution.  Another approach is to use a varifocal 

mirror whose oscillations are synchronized with a 2-D display it reflects [156]; the 

difficulty with such a display is building the varifocal mirror. 

Another type of volumetric display technology is based on sweeping the display 

volume.  2-D slices of the scene are displayed in rapid succession and the eye 
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integrates them into a 3-D image [43, 116].  The greatest challenge is the 

mechanical scanning, which is noisy, imprecise, and fragile.  

Several emerging technologies show potential for producing 3-D images.  

Electroholography [91] produces an interference pattern (holographic fringe) 

which is then illuminated to produce a 3-D image by diffraction (modulation of 

holographic fringe).  The approach is hampered by the enormous amount of data   

To the best of our knowledge, the only volumetric displays available 

commercially are those produced by Actuality Systems [116] and LightSpace 

Technologies [87].  All volumetric displays convert a 3-D scene description into a 

3-D image.  Our method produces a simplified description of the scene which is 

then used to compute the 3-D image.  Therefore, in principle, the method can be 

applied to other volumetric display technologies.  We demonstrate the 

effectiveness of our method on the Perspecta volumetric display [116], which we 

characterize in detail later. 

3.5.5.2. Algorithm Overview 

Given a 3-D scene S and a reference view expressed as a planar pinhole 

camera PPHC0, our algorithm proceeds in the following main steps: 

1. Construct an occlusion camera OC0 from PPHC0 and S. 

2. Build a reference image OCRI0 from OC0 and S. 

3. Produce 3-D image I3D0 from OCRI0. 

The occlusion camera depends on the reference view and the scene geometry it 

encompasses.  Once OC0 is known, S is replaced with OCRI0, which provides a 

view-optimized, bounded-cost approximation of the scene.  
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3.5.5.3. Occlusion Camera 

An occlusion camera is constructed for a given scene and reference view, and 

has the following properties: 

1. Disocclusion: Some rays of the camera sample surfaces that are not 

visible in the reference view, but are likely to become visible in nearby 

views. 

2. Single layer: The camera acquires a 2-D image; at each pixel, the image 

stores the depth and color of the closest surface sample along the ray at 

that pixel. 

3. Unambiguous projection: A 3-D point projects to at most a single image 

location (no two rays intersect). 

4. Efficient projection: The projection of a 3-D point is computed in a constant 

number of steps. 

The first property ensures that the OCRI is less prone to disocclusion errors than 

a regular depth image.  Because of the second property, the OCRI has a 

bounded number of samples. 

The last two properties ensure that the OCRI can be constructed efficiently with 

the feed-forward graphics pipeline. 

3.5.5.4. Occlusion Camera Reference Image Construction 

We demonstrated the application of the occlusion camera to 3-D display 

acceleration using the depth discontinuity occlusion camera (DDOC) and 

epipolar occlusion camera (EOC).  Rendering of the DDOC proceeds as 

described in section 3.2, and rendering the EOC proceeds as described in 

section 3.3. 
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3.5.5.5. Rendering Using the OCRI 

The OCRI provides a good approximation of the scene, tailored to the reference 

view.  The OCRI is converted to a 3-D triangle mesh, which is then used by the 

volumetric display driver to render the 3-D image, in lieu of the original scene 

model.  Each sample in the OCRI corresponds to a 3-D point with color.  To 

recover the 3-D point from the OCRI sample, one needs to be able to unproject 

the sample back in 3-D.   

3.5.5.6. Rotating Screen Volumetric 3-D Display 

As stated earlier, all 3-D displays transform the geometry and color scene 

description into a 3-D image.  Our method reduces the complexity of the scene 

by adapting the level-of-detail and safely discarding surfaces that are not visible 

in any view of interest to the user.  Therefore, our method is applicable to a 

variety of 3-D displays. 

Available to us is a volumetric display (Figure 3.52) that builds a 3-D image one 

slice at the time, with a rotating screen [116].  The screen has a radius of 5”, it is 

diffuse and semitransparent, and it rotates with an angular velocity of 720 rpm.  

Both faces of the screen carry an image resulting in a refresh rate is 24 Hz, 

which corresponds to a 180° rotation.  The display projects onto the screen the 

intersection between the scene and the plane of the screen 198 times for every 

complete rotation.  The optical path is folded using 3 mirrors M0-M2.  The mirrors 

and screen are enclosed in an inner glass sphere that rotates with the screen; 

the glass sphere is enclosed in a stationary outer glass sphere.  The display is 

not perfectly balanced which causes it to wobble.  We estimate the amplitude of 

the wobbling to be 0.5 cm.  Each slice has a resolution of 768x768.  The color 

resolution is 32-bit RGBA but it is compressed to 3-bit RGB.  The reduced image 

brightness requires dimming the ambient lights when the display is in use (Figure 

3.52). 
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Figure 3.52.  Photograph of the volumetric 3-D display.  The 3-D display used to 

validate the OCRI approach (left) is typically viewed at a distance of 50” (right). 

The application runs on a host computer (IBM, Intel chipset, Windows XP 

operating system) connected to the display with a SCSI interface.  The display 

manufacturer has provided a driver that supports OpenGL.  The timing 

information reported in this paper was obtained with a display driver v1.5.  The 3-

D image maps the model space unit sphere to the volume of the display. 

The photographs shown throughout were taken with a digital camera with the 

following settings: no ambient lights, aperture F2.8, exposure time 1/25s, and 

simulated film sensitivity ISO400.  Our camera does not offer 1/24s as one of the 

possible exposure times, which would have allowed acquiring a complete 3-D 

image.  We used the slightly shorter exposure time since the wobbling produces 

excessive blurriness if the shutter remains open more than 180° and the screen 

revisits a part of the 3-D image.  The slightly shorter exposure time misses (1/24-

1/25)*(12*360°) = 7.2° of the 3-D image.  We took several snapshots for every 

position to place the missing 3-D image sector in a convenient location (see 

black stripe that splits the vertical plane in Figure 3.49—left or the horizontal 

plane in Figure 3.50). 
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Figure 3.53.  Photographs of the 3-D display of the Happy Buddha statues.  The 

3-D image was rendered from a DI (left) and from an OCRI (right).  The 

photographs were taken from the reference viewpoint (row 1), and from 4” above 

the reference viewpoint (row 2).  Side view shows the “shadows” shrunk by the 

OCRI (row 3). 
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3.5.5.7. Results 

We have tested our approach with the DDOC on several 3-D scenes, both with 

our volumetric display simulator and the actual volumetric display: the bunny 

(Figure 3.45 through Figure 3.51), the four Happy Buddha statues (Figure 3.53), 

and the Thai statue (Figure 3.54) scenes.  We have also tested our approach 

using the EOC on the teapot scene (Figure 3.55). 

OCRIs prove to be a robust solution to the problem of disocclusion errors, and 

can handle complex scenes.  We measure the disocclusion errors present in a 

frame by rendering a ground truth image from geometry and counting how many 

ground truth image samples are not present in the frame.  We rendered 

sequences of frames by moving the viewpoint on the edges of an 8” cube 

centered at the reference viewpoint.  The disocclusion errors measured when 

using the OCRI were, on average, 4.5% of those measured when using a depth 

image as reference. 

The OCRI provides efficient projection and is constructed with the help of 

graphics hardware.  Table 3.5 reports the 3-D image rendering times and the 

number of triangles for each of three scenes (bunny, Happy Buddha statues, and 

Thai statue) and for each of three scene representations (depth image, OCRI, 

and geometry).  The OCRI approach has three main steps: the occlusion camera 

model is computed first, then the OCRI is constructed by rendering the scene 

with the occlusion camera, and then finally the 3-D image is produced from the 

triangle mesh defined by the OCRI.  The table reports the aggregate time for 

steps 1 and 2 as Ctime, and the time for step 3 as Time.  The resolution of the 

desired image and that of the reference image is 720x480.  The depth image and 

the OCRI always generate the same number of triangles since the OCRI has a 

single layer where it stores the hidden samples at the cost of reducing the 

sampling rate for the visible surfaces. 
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In the case of the bunny scene, the depth image and the OCRI generate more 

triangles than present in the original model, with the consequence of a larger 3-D 

image rendering time.  For the bunny, creating a depth image or an OCRI at this 

resolution is wasteful—the new vertices do not bring any new information since 

they are computed by interpolation.  Once a more suitable resolution is selected 

(180x120, see row Bunny QR in the table), the speedup is considerable.  For the 

DI representation, we define the speedup as the ratio between the time needed 

to render the 3-D image from the original geometric model and depth image.  For 

the OCRI representation we compute the speedup by dividing by the sum of Ctime 

and Time.  Therefore the speedup is 7.81 0.766⁄ = 10.2 for the DI and 7.81/�0.875 + 0.75� = 4.8 for the OCRI. 

For the Happy Buddha statues scene, the speedup is 11.5 for the DI and 5.5 for 

the OCRI.  For the 10 million triangles Thai statue, rendering the 3-D image from 

the DI or the OCRI brings a speedup of 23 and 8.5, respectively.  The advantage 

of the DI and OCRI increases with the complexity of the scene, since the DI and 

the OCRI generate the same number of triangles (e.g. 612,000) regardless of the 

complexity of the original scene model.  The DI approach is more efficient since it 

does not incur the cost of OCRI construction, but it suffers from greater 

disocclusion errors.  

      

Figure 3.54.  Simulator images of the Thai statue scene.  Frames rendered from 

a DI (left) and an OCRI (right). 
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Table 3.5.  Rendering performance measured for various scenes. 

Scene 

DI OCRI Geometry 

Triangles 
(x103) 

Time (s) 
Triangles 

(x103) 
Ctime (s) Time (s) 

Triangles 
(x103) 

Time (s) 

Bunny 612 12.0 612 2.73 11.8 321 8.02 

Bunny 
QR 37.8 .766 37.8 .875 .75 321 7.81 

Buddha 
statues 612 11.4 612 12.1 11.5 4,603 131 

Thai 
statue 612 12.5 612 20.3 13.9 10,252 292 

 

The ray-phase space representation [151] is a 4-D plenoptic representation 

which instead of using two planes in front of the desired viewpoints for 

parameterization, uses a 2-D parameterized surface that surrounds the scene of 

interest, and then a 2-D parameterization of the outgoing rays for each surface 

point.  The approach is similar to surface light fields [169] and models developed 

for general imaging systems [55].  In our case, a natural parameterization surface 

is the sphere described by the revolving screen, whose visible area is 

approximately 38% of the area of a sphere with a radius of 5 inches, or 120 

square inches.  For an average sampling rate of one point per square millimeter 

and 16x16 rays for each point, the total number of rays is 19 million.  Generating 

these rays requires rendering the scene at least 57 times, for a construction time 

of 6.84 s, which ignores the cost of rearranging the rays according to the ray-

phase parameterization. 

For the 720x480 resolution, the 8-bit R, G, B, A channels and the 32-bit floating 

point z channel amount to 2.6 MB.  The 16 floats needed to store the view are 

negligible.  The LDI adds only a few non-redundant samples.  The 

uncompressed LF requires considerable storage space.  Compression could 
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reduce the memory consumption 10 or 100 fold, with the corresponding 

compression and decompression time costs and loss of quality [84].  The ULF 

has a more manageable uncompressed size, but is less redundant and thus 

compresses less well.  The 19 million color samples of the RPS representation 

translate to 76 MB. 

Table 3.6.  A comparison of the construction performance. 

 DI LDI LF ULF RPS OCRI 

Construction Time (s) 0.12 3.84 30.72 3.84 6.84 11.5 

Memory size (MB) 2.6 3 332.8 41.6 76 5.2 

 

The OCRI requires twice the storage since the points are perturbed and the x 

and y coordinates need to be store explicitly (whereas in the DI or LDI, they are 

provided implicitly by the pixel coordinates).  We have charged 8 additional bytes 

for per pixel floating point x and y, however a slimmer 2 byte fixed point 

representation would work equally well.  Whereas DIs and OCRIs compress well 

using the coherence of the single layer, the variable depth of the multilayered LDI 

pixels hinder compression.  Note that the distortion map is only needed during 

construction. 

The plenoptic representations are not supported by our 3-D display.  On a 

regular LCD, the scene can be rendered at refresh rate (60 Hz for our system) 

when using the DI, LDI, or OCRI.  The LF and ULF representations have been 

shown to support frame rates as high as 20Hz. Quality wise, the OCRI produces 

images comparable to those rendered using the original geometry.  DIs suffer 

from disocclusion errors.  LDIs produce lower quality images since they lack 

connectivity and are rendered by splatting [25, 130, 142].  Estimating the size 

and shape of the splats cannot be done both efficiently and accurately.  The 

splats are typically overestimated and modeled as rectangles or disks, which 

produces blockiness.  Typical artifacts when rendering from plenoptic 
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representations are coarseness (due to low spatial sampling resolution, as it is 

the case for the numbers chosen for this table), and compressions artifacts. 

In conclusion, OCRIs, like DIs and LDIs, capture the scene well and are compact 

since they use the depth and the diffuse surface assumption to reuse color 

samples over a continuum of nearby views.  OCRIs do away with disocclusion 

errors, the major disadvantage of depth images.  The plenoptic representations 

have the advantage of not requiring geometry and can be acquired with a tracked 

camera.  The plenoptic representations do provide limited support for view 

dependent effects, such as glossiness.  Highly reflective surfaces are not 

supported since these entail the need of a very high spatial sampling resolution. 

 



 

 

126

CHAPTER 4.  THE GRAPH CAMERA FAMILY 

The planar pinhole camera (PPC) can only sample data to which there is direct 

line-of-sight from the pinhole, due to the single viewpoint limitation.  In the 

context of complex 3-D datasets, occlusions hide regions of interest and reduce 

the visualization payload of PPC images.  The problem of occlusions has been 

addressed in visualization using a variety of approaches.  One approach is to 

render the occluding layers transparently, or to cut a hole into the occluding 

layers to reveal the hidden data subset.  Such transparency and cutaway 

techniques work well when the number of occluding layers is small and when a 

summary representation of these layers is acceptable.  A second approach is to 

distort the 3-D dataset such that the alignment between the viewpoint, the 

occluder, and the data subset of interest is broken.  The approach has the 

advantage of a clear and complete visualization, but specifying a dataset 

distortion that achieves the desired disocclusion effect while minimizing the 

visualization distortion is challenging. 

Another approach is to simply rely on the user to navigate the camera around 

occluders interactively in order to establish a direct line-of-sight to data subsets 

of potential interest.  Such sequential visualization can be inefficient.  When the 

disoccluded data subset turns out to be of no interest, the camera path has to be 

retraced which is wasteful and can confuse the user.  The single viewpoint 

limitation has also been addressed by using several PPC images simultaneously.  

However, the approach suffers from visualization discontinuity between individual 

images.  The user cannot monitor all images in parallel and has to spend 

considerable cognitive effort to adapt sequentially to each one of the many 

visualization contexts. 
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Multiperspective visualization is a promising approach based on integrating data 

sampled from multiple viewpoints into a single image.  The multiple viewpoints 

are integrated tightly which alleviates the visualization discontinuity problem of 

multiple individual images.  Like in the case of the dataset distortion approach, 

multiperspective visualization amounts to a warp of global spatial relationships 

between data subsets.  However, multiperspective visualization allows specifying 

the desired disocclusion effect directly in the image, as opposed to indirectly, 

through a dataset distortion.  Finally, multiperspective visualization does not 

preclude but rather enhances interactive exploration of datasets.  The 

multiperspective image provides a preview of data subsets to come which 

improves interactive visualization efficiency. 

 

   

Figure 4.1.  Enhanced virtual 3-D scene exploration.  The graph camera image 

(top) samples longitudinally the current street segment as well as the 3 segments 

beyond the first intersections (bottom, left).  The 4 side streets are occluded in 

conventional images (bottom, right). 
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To further address the single viewpoint limitation, we introduce the graph camera 

family, a family of non-pinhole cameras that samples simultaneously multiple 

regions of interest in a 3-D scene.  The graph camera integrates several PPC 

images into a single image with good continuity and little redundancy.  The graph 

camera is a graph of PPC frusta constructed from a regular PPC through a 

sequence of frustum bending, splitting, and merging operations.  Despite the 

camera model complexity, a fast 3-D point projection operation allows rendering 

at interactive rates. 

  

Figure 4.2.  A 3-D scene summarization example.  The graph camera image that 

summarizes a cartoon town scene (left) and PPC image for comparison (right). 

Multiperspective visualization has challenges of its own.  The multiperspective 

image is computed using a non-pinhole camera model that does not project 3-D 

lines to image plane lines, so one challenge is achieving the desired disocclusion 

effect while minimizing visualization distortions.  The non-pinhole camera model 

is considerably more complex than the PPC model, so a second challenge is to 

achieve adequate rendering performance to support interactive visualization and 

dynamic datasets.  The elimination of the single viewpoint constraint of the PPC 

model results in a higher dimensional camera model design space.  Whereas for 

the PPC model the only intrinsic parameter of significant relevance in shaping the 

visualization is the focal length, optimizing multiperspective visualization requires 

tuning a larger number of parameters.  Consequently a third challenge is to 

specify the camera model that best visualizes a given dataset from a given 

location. 
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The flexibility of the graph camera model makes it useful in many contexts.  The 

most direct application is the enhancement of navigation in virtual 3-D scenes.  

Instead of being limited to a single viewpoint, the user benefits from an image 

that integrates multiple viewpoints, which allows viewing multiple scene regions 

in parallel, without having to establish direct line-of-sight to each scene region 

sequentially.  The enhanced navigation enabled by the graph camera promises 

to reduce the time needed to find static targets and to greatly increase the 

likelihood that dynamic targets—moving or transient—are found.  In Figure 4.1 

the user position is shown with the red frame (bottom, left).  The graph camera 

image lets the user see up to as well as beyond the first street intersections. 

 

Figure 4.3.  An ambient occlusion example.  A graph camera depth buffer 

illustrated with color (left) is used to render the ambient occlusion effect (middle) 

and compared to using a PPC depth buffer (right).  The graph camera captures 

hidden parts of the dragon for a more complete and stable shadow. 

Another graph camera application is in the context of 3-D scene summarization, 

where the goal is to inventory the representative parts of a scene in a visually 

eloquent composition.  A graph camera can be quickly laid out such as to sample 

any desired set of scene parts, producing a quality summarization image at a 

fraction of the time costs associated with previous techniques.  In Figure 4.2 the 

graph camera was constructed to sample most building façades.  Sampling the 

same buildings with a PPC leads to poor image space utilization. 
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accurate in a number of regions (the floor left of the dragon and the back leg and 

tail to the right of the dragon). 

Finally, the graph camera can also be used for visualizing real-world scenes.  A 

physical implementation is obtained by assigning a video camera to each of the 

PPCs in the graph camera.  The result is a seamless integration of the video 

feeds, which enables monitoring complex real-world spaces with a single image.  

Unlike individual video feeds, the graph camera image is non-redundant and 

mostly continuous.  In Figure 4.4 monitoring the hallway is facilitated by the 

graph camera image which bypasses the need to monitor individual video feeds 

sequentially.  Moreover the moving subject is easier to follow in the graph 

camera image which alleviates the jumps between individual video feeds. 

4.1. The Graph Camera 

We define 3 basic construction operations on the frustum of a PPC (Figure 4.5).  

Given a PPC with center-of-projection (COP) C, a plane p, and a point C’, the 

bending operation changes the viewpoint to C’ beyond p.  The splitting operation 

introduces two viewpoints Cl and Cr beyond planes pl and pr.  Splitting is 

equivalent to two bending operations that act on subsets of the rays of the initial 

PPC.  The merging operation takes two PPCs with COPs Cl and Cr and reduces 

the two viewpoints to one (Cm) beyond a given plane p.  For all operations the 

resulting rays are defined by two connected segments. 

By definition, a graph camera is a directed graph with PPCs at its nodes (Figure 

4.6).  The graph is constructed starting from a root PPC through a sequence of 

bending, splitting, and merging operations.  For each operation, graph edges 

connect the input PPC(s) to the output PPC(s).  The graph camera rays originate 

at the COP of the root PPC and are defined by a chain of connected segments.  

The graph camera image is collected at the root PPC before any frustum 

operation (see image plane in Figure 4.6). 
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Figure 4.5.  Basic graph camera construction operations.  Bending (left), splitting 

(middle), and merging (right) are shown with sample rays in red. 

Since each ray is C0 continuous, the graph camera image is C0 continuous, 

except for where splitting lines are visible.  For example, in Figure 4.5 the line at 

the intersection of planes pl and pr is hidden by geometry (white rectangle) which 

avoids a discontinuity in the output image.  The graph camera image is non-

redundant as long as the frusta are disjoint.  Unlike most camera models, the 

graph camera is defined based on the actual 3-D scene it is visualizing.  Its rays 

are designed to circumvent occluders to reach deep into the scene. 

Once the camera model is defined, graph camera images can be rendered using 

ray tracing, by intersecting the piecewise linear rays with scene geometry.  

However, faster feed-forward rendering is possible due to the availability of a fast 

projection operation.  Given a graph camera with root frustum PPC0 and a 3-D 

point P inside a frustum PPCi, one can directly compute the image plane 

projection P’ of P using a 4-D matrix M0i = M0M1...Mi, where Mk (k = 0..i) are the 

4-D PPC matrices for the frusta on the path from PPC0 to PPCi.  For example 

point P in Figure 4.6 is projected with matrix M0M1M3.  A PPC matrix is the 

product between the usual projection and the view matrices of the PPC.  The 

matrix M0i is computed for each frustum PPCi at graph camera construction.  

Further derivation of the projection function can be found in Appendix A. 
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Special care needs to be taken when deriving the projection matrix for frusta 

downstream from a merging operation.  For example in Figure 4.6 point Q is 

projected with matrix M0M1M3M4 and point R with matrix M0M1M2M4.  Although all 

rays inside frustum PPC4 converge to C4, the frustum is implemented with two 

sub-frusta, each with its own projection matrix.  Projection is defined using a tree 

and not a graph, whose unique paths from a node to the root define the 

projection operation unambiguously. 

A scene modeled with triangles is rendered with a graph camera one PPC 

frustum at the time.  The triangles intersecting frustum PPCi are found using a 

conventional hierarchical space subdivision scheme; we use an octree.  A 

triangle is clipped with PPCi, vertices are transformed and projected with the 

matrix M0i of PPCi, and the projected triangle is rasterized conventionally.  The 

graph camera image is a collection of PPC pieces, thus conventional linear 

rasterization can be used within each piece. 

 

Figure 4.6.  A graph camera with five frusta.  First, PPC0 is bent.  PPC1 is split 

into PPC2 and PPC3 then merged into PPC4 to shrink the occlusion shadow of 

the rectangular object B.  P and Q are projected at P’. 



 

 

showing the left (

To further address the challenges of multiperspective visualization, we developed 

a novel multiperspective visualization technique based on the curved ray camera 

(CRC)

has an abrupt 

the CRC 

A CRC ray is a sequence of line segments connected by conic curve segments.

Each conic

alleviates visualization distortions. 

which allows rendering 3

rasterization, with the help of graphics hardware. 

traced inexpensively which enables visualization t

 

 

Figure 

conventional PPC street

showing the left (

To further address the challenges of multiperspective visualization, we developed 

a novel multiperspective visualization technique based on the curved ray camera 

(CRC) which 

has an abrupt 

the CRC allow for a progressive transition between one viewpoint and the next. 

A CRC ray is a sequence of line segments connected by conic curve segments.

Each conic

alleviates visualization distortions. 

which allows rendering 3

rasterization, with the help of graphics hardware. 

traced inexpensively which enables visualization t

Figure 4.7.  A curved ray camera street

conventional PPC street

showing the left (top, right

To further address the challenges of multiperspective visualization, we developed 

a novel multiperspective visualization technique based on the curved ray camera 

which integrates multiple viewpoints seamlessly.

has an abrupt C0 transition between neighboring perspectives, t

allow for a progressive transition between one viewpoint and the next. 

A CRC ray is a sequence of line segments connected by conic curve segments.

Each conic connects consecutive line segments with 

alleviates visualization distortions. 

which allows rendering 3

rasterization, with the help of graphics hardware. 

traced inexpensively which enables visualization t

A curved ray camera street

conventional PPC street-level visualization (

top, right) and right side streets (

of CRC rays (

4.2. The Curved Ray Camera

To further address the challenges of multiperspective visualization, we developed 

a novel multiperspective visualization technique based on the curved ray camera 

integrates multiple viewpoints seamlessly.

transition between neighboring perspectives, t

allow for a progressive transition between one viewpoint and the next. 

A CRC ray is a sequence of line segments connected by conic curve segments.

connects consecutive line segments with 

alleviates visualization distortions. 

which allows rendering 3-D surface datasets efficiently by projection followed by 

rasterization, with the help of graphics hardware. 

traced inexpensively which enables visualization t

 

 

A curved ray camera street

level visualization (

and right side streets (

of CRC rays (bottom, right

The Curved Ray Camera

To further address the challenges of multiperspective visualization, we developed 

a novel multiperspective visualization technique based on the curved ray camera 

integrates multiple viewpoints seamlessly.

transition between neighboring perspectives, t

allow for a progressive transition between one viewpoint and the next. 

A CRC ray is a sequence of line segments connected by conic curve segments.

connects consecutive line segments with 

alleviates visualization distortions.  The CRC provides a fast projection operation 

D surface datasets efficiently by projection followed by 

rasterization, with the help of graphics hardware. 

traced inexpensively which enables visualization t

A curved ray camera street-level visualization example.  

level visualization (top, left), and CRC visualizations 

and right side streets (bottom, left

bottom, right). 

The Curved Ray Camera

To further address the challenges of multiperspective visualization, we developed 

a novel multiperspective visualization technique based on the curved ray camera 

integrates multiple viewpoints seamlessly.

transition between neighboring perspectives, t

allow for a progressive transition between one viewpoint and the next. 

A CRC ray is a sequence of line segments connected by conic curve segments.

connects consecutive line segments with 

The CRC provides a fast projection operation 

D surface datasets efficiently by projection followed by 

rasterization, with the help of graphics hardware.  The rays of the CRC can be 

traced inexpensively which enables visualization techniques that require ray 

level visualization example.  

), and CRC visualizations 

bottom, left) and a visualization 

 

The Curved Ray Camera 

To further address the challenges of multiperspective visualization, we developed 

a novel multiperspective visualization technique based on the curved ray camera 

integrates multiple viewpoints seamlessly.  While the graph

transition between neighboring perspectives, the

allow for a progressive transition between one viewpoint and the next. 

A CRC ray is a sequence of line segments connected by conic curve segments.

connects consecutive line segments with C1 continuity, which 

The CRC provides a fast projection operation 

D surface datasets efficiently by projection followed by 

The rays of the CRC can be 

echniques that require ray 

level visualization example.  A 

), and CRC visualizations 

) and a visualization 

To further address the challenges of multiperspective visualization, we developed 

a novel multiperspective visualization technique based on the curved ray camera 

While the graph camera

he curved rays 

allow for a progressive transition between one viewpoint and the next. 

A CRC ray is a sequence of line segments connected by conic curve segments.

continuity, which 

The CRC provides a fast projection operation 

D surface datasets efficiently by projection followed by 

The rays of the CRC can be 

echniques that require ray 

134

 

 

), and CRC visualizations 

) and a visualization 

To further address the challenges of multiperspective visualization, we developed 

a novel multiperspective visualization technique based on the curved ray camera 

camera 

curved rays of 

allow for a progressive transition between one viewpoint and the next.  

A CRC ray is a sequence of line segments connected by conic curve segments.  

continuity, which 

The CRC provides a fast projection operation 

D surface datasets efficiently by projection followed by 

The rays of the CRC can be 

echniques that require ray 



 

 

casting, such as volume rendering.

constructors which 

navigation and scene summarization

Figure 

A

The CRC samples the main street up to 

second viewpoint to sample the side streets.

image are 

curve segment, and 

of 

the second 

right side street.

transition region.

intersects a 

approximately straight, and distortions are minimized (

region, switching directly from the first to the second line segment (i.e. 

camera 

the car occurs (

 

 

 

casting, such as volume rendering.

constructors which 

navigation and scene summarization

Figure 4.7 illustrates the use of the CRC to alleviate occlusions in visualization.

A CRC is used to preview the two side streets without advancing the camera.

The CRC samples the main street up to 

second viewpoint to sample the side streets.

image are also 

curve segment, and 

of line segments converge at the first viewpoint, sampling the main street, and 

the second set of 

right side street.

transition region.

intersects a 

approximately straight, and distortions are minimized (

region, switching directly from the first to the second line segment (i.e. 

camera piecewise linear rays with only 

the car occurs (

Figure 4.8

camera.  The CRC visualization (

perspective transition region as opposed to the graph camera which switches 

 

casting, such as volume rendering.

constructors which further 

navigation and scene summarization

illustrates the use of the CRC to alleviate occlusions in visualization.

CRC is used to preview the two side streets without advancing the camera.

The CRC samples the main street up to 

second viewpoint to sample the side streets.

also shown.

curve segment, and finally 

line segments converge at the first viewpoint, sampling the main street, and 

set of line segments converge at the second viewpoint, sampling the 

right side street.  The conic curves implement the viewpoint change ove

transition region.  In Figure 

intersects a relatively small piece of the curved rays

approximately straight, and distortions are minimized (

region, switching directly from the first to the second line segment (i.e. 

piecewise linear rays with only 

the car occurs (right). 

8.  Distortion comparison between the curved ray camera and graph 

camera.  The CRC visualization (

perspective transition region as opposed to the graph camera which switches 

casting, such as volume rendering.

further address the graph camera applications of enhanced 

navigation and scene summarization

illustrates the use of the CRC to alleviate occlusions in visualization.

CRC is used to preview the two side streets without advancing the camera.

The CRC samples the main street up to 

second viewpoint to sample the side streets.

shown.  Each ray consists of first 

finally a second line segment (see purp

line segments converge at the first viewpoint, sampling the main street, and 

line segments converge at the second viewpoint, sampling the 

The conic curves implement the viewpoint change ove

Figure 4.8 the car is located in the transition region. 

relatively small piece of the curved rays

approximately straight, and distortions are minimized (

region, switching directly from the first to the second line segment (i.e. 

piecewise linear rays with only 

.  Distortion comparison between the curved ray camera and graph 

camera.  The CRC visualization (

perspective transition region as opposed to the graph camera which switches 

abruptly between viewpoints (

casting, such as volume rendering.  We have developed several CRC 

address the graph camera applications of enhanced 

navigation and scene summarization.  

illustrates the use of the CRC to alleviate occlusions in visualization.

CRC is used to preview the two side streets without advancing the camera.

The CRC samples the main street up to the intersection and then switches to a 

second viewpoint to sample the side streets.

Each ray consists of first 

a second line segment (see purp

line segments converge at the first viewpoint, sampling the main street, and 

line segments converge at the second viewpoint, sampling the 

The conic curves implement the viewpoint change ove

the car is located in the transition region. 

relatively small piece of the curved rays

approximately straight, and distortions are minimized (

region, switching directly from the first to the second line segment (i.e. 

piecewise linear rays with only C0 

.  Distortion comparison between the curved ray camera and graph 

camera.  The CRC visualization (left) minimizes the distortion through the 

perspective transition region as opposed to the graph camera which switches 

abruptly between viewpoints (

We have developed several CRC 

address the graph camera applications of enhanced 

illustrates the use of the CRC to alleviate occlusions in visualization.

CRC is used to preview the two side streets without advancing the camera.

the intersection and then switches to a 

second viewpoint to sample the side streets.  The CRC rays for the 

Each ray consists of first a line segment, 

a second line segment (see purp

line segments converge at the first viewpoint, sampling the main street, and 

line segments converge at the second viewpoint, sampling the 

The conic curves implement the viewpoint change ove

the car is located in the transition region. 

relatively small piece of the curved rays.  A

approximately straight, and distortions are minimized (left

region, switching directly from the first to the second line segment (i.e. 

 continuity), a distu

.  Distortion comparison between the curved ray camera and graph 

) minimizes the distortion through the 

perspective transition region as opposed to the graph camera which switches 

abruptly between viewpoints (right

We have developed several CRC 

address the graph camera applications of enhanced 

illustrates the use of the CRC to alleviate occlusions in visualization.

CRC is used to preview the two side streets without advancing the camera.

the intersection and then switches to a 

The CRC rays for the 

line segment, 

a second line segment (see purple lines).

line segments converge at the first viewpoint, sampling the main street, and 

line segments converge at the second viewpoint, sampling the 

The conic curves implement the viewpoint change ove

the car is located in the transition region. 

.  A small piece of the ray is 

left).  Without the transition 

region, switching directly from the first to the second line segment (i.e. 

continuity), a disturbing distortion of 

.  Distortion comparison between the curved ray camera and graph 

) minimizes the distortion through the 

perspective transition region as opposed to the graph camera which switches 

right). 

We have developed several CRC 

address the graph camera applications of enhanced 

illustrates the use of the CRC to alleviate occlusions in visualization.

CRC is used to preview the two side streets without advancing the camera.

the intersection and then switches to a 

The CRC rays for the bottom 

line segment, then a conic 

le lines).  The first 

line segments converge at the first viewpoint, sampling the main street, and 

line segments converge at the second viewpoint, sampling the 

The conic curves implement the viewpoint change ove

the car is located in the transition region.  The car 

small piece of the ray is 

Without the transition 

region, switching directly from the first to the second line segment (i.e. graph 

rbing distortion of 

.  Distortion comparison between the curved ray camera and graph 

) minimizes the distortion through the 

perspective transition region as opposed to the graph camera which switches 

135

We have developed several CRC 

address the graph camera applications of enhanced 

illustrates the use of the CRC to alleviate occlusions in visualization.  

CRC is used to preview the two side streets without advancing the camera.  

the intersection and then switches to a 

bottom left 

a conic 

The first set 

line segments converge at the first viewpoint, sampling the main street, and 

line segments converge at the second viewpoint, sampling the 

The conic curves implement the viewpoint change over a 

The car 

small piece of the ray is 

Without the transition 

graph 

rbing distortion of 

 

.  Distortion comparison between the curved ray camera and graph 

) minimizes the distortion through the 

perspective transition region as opposed to the graph camera which switches 



 

 

The 

illustrated in the context of the visualization of a DNA molecule.

an atom as the target

the occlusion of the target by modifying the parameters of the CRC dynamically.

The second row illustrate

row illustrates CRC path previewing in the context of the visua

canyon terrain dataset.

target atom shown with wireframe bounding box occluded in the PPC view (

rendered with a PPC (

a

 

 

The first row of 

illustrated in the context of the visualization of a DNA molecule.

an atom as the target

the occlusion of the target by modifying the parameters of the CRC dynamically.

The second row illustrate

row illustrates CRC path previewing in the context of the visua

canyon terrain dataset.

Figure 4.9.  

target atom shown with wireframe bounding box occluded in the PPC view (

and disoccluded in the CRC view (

rendered with a PPC (

and right).  Bottom

that preview an increasing section of the river bed ahead (

row of Figure 

illustrated in the context of the visualization of a DNA molecule.

an atom as the target, 

the occlusion of the target by modifying the parameters of the CRC dynamically.

The second row illustrate

row illustrates CRC path previewing in the context of the visua

canyon terrain dataset.

 

.  A series of curved ray camera examples.  

target atom shown with wireframe bounding box occluded in the PPC view (

and disoccluded in the CRC view (

rendered with a PPC (

Bottom: canyon terrain dataset visualized with a PPC (

that preview an increasing section of the river bed ahead (

Figure 4.9 illustrates CRC target tracking.

illustrated in the context of the visualization of a DNA molecule.

 and as the view translates, th

the occlusion of the target by modifying the parameters of the CRC dynamically.

The second row illustrates the CRC 

row illustrates CRC path previewing in the context of the visua

canyon terrain dataset.  The path was chosen to correspond to the river.

 

 

A series of curved ray camera examples.  

target atom shown with wireframe bounding box occluded in the PPC view (

and disoccluded in the CRC view (

rendered with a PPC (left) and a CRCs with rays of increasing curvature (

canyon terrain dataset visualized with a PPC (

that preview an increasing section of the river bed ahead (

illustrates CRC target tracking.

illustrated in the context of the visualization of a DNA molecule.

and as the view translates, th

the occlusion of the target by modifying the parameters of the CRC dynamically.

CRC in the context of 

row illustrates CRC path previewing in the context of the visua

The path was chosen to correspond to the river.

 

A series of curved ray camera examples.  

target atom shown with wireframe bounding box occluded in the PPC view (

and disoccluded in the CRC view (right).  Middle

) and a CRCs with rays of increasing curvature (

canyon terrain dataset visualized with a PPC (

that preview an increasing section of the river bed ahead (

illustrates CRC target tracking.

illustrated in the context of the visualization of a DNA molecule.

and as the view translates, the algorithm attempts to avoid 

the occlusion of the target by modifying the parameters of the CRC dynamically.

in the context of volume rendering

row illustrates CRC path previewing in the context of the visua

The path was chosen to correspond to the river.

 

 

A series of curved ray camera examples.  

target atom shown with wireframe bounding box occluded in the PPC view (

Middle: engine block dataset volume 

) and a CRCs with rays of increasing curvature (

canyon terrain dataset visualized with a PPC (

that preview an increasing section of the river bed ahead (

illustrates CRC target tracking.  Target tracking is 

illustrated in the context of the visualization of a DNA molecule.  The user selects 

e algorithm attempts to avoid 

the occlusion of the target by modifying the parameters of the CRC dynamically.

volume rendering

row illustrates CRC path previewing in the context of the visua

The path was chosen to correspond to the river.

A series of curved ray camera examples.  Top: DNA molecule with 

target atom shown with wireframe bounding box occluded in the PPC view (

: engine block dataset volume 

) and a CRCs with rays of increasing curvature (

canyon terrain dataset visualized with a PPC (

that preview an increasing section of the river bed ahead (middle and right

Target tracking is 

The user selects 

e algorithm attempts to avoid 

the occlusion of the target by modifying the parameters of the CRC dynamically.

volume rendering.  The third 

row illustrates CRC path previewing in the context of the visualization of a 

The path was chosen to correspond to the river.  

DNA molecule with 

target atom shown with wireframe bounding box occluded in the PPC view (

: engine block dataset volume 

) and a CRCs with rays of increasing curvature (middle

canyon terrain dataset visualized with a PPC (left) and CRCs 

middle and right

136

Target tracking is 

The user selects 

e algorithm attempts to avoid 

the occlusion of the target by modifying the parameters of the CRC dynamically.  

The third 

lization of a 

 The 

 

 

 

DNA molecule with 

target atom shown with wireframe bounding box occluded in the PPC view (left) 

: engine block dataset volume 

middle 

) and CRCs 

middle and right). 



 

 

137

CRC effectively linearizes a section of the river.  The length of the linearized 

section is controlled with a user parameter.  Evenly-spaced colored markers 

were added along the path in order to illustrate the path preview effect and to 

facilitate comparing the images. 

4.2.1. Camera Model 

The design of the curved ray camera has to allow circumventing occluders and 

reaching deep into the dataset to disocclude subsets of interest.  Given a starting 

planar pinhole camera PPC0 with viewpoint C0, a plane t1, and a second 

viewpoint C1, we want to build a camera model that uses viewpoint C0 up to t1 

and then switches to C1.  In order to make the transition smooth we use two 

additional planes t0 and t2 that define a transition region where the viewpoint 

change occurs (Figure 4.10).  We connect the C0 and C1 rays with a quadratic 

polynomial Bézier, which is the simplest curve that provides C1 continuity at both 

connection points.  For example, the CRC ray through P0 is the C0 ray up to 

plane t0, then the quadratic Bézier with control points P0, P1, and P2, and then the 

C1 ray beyond plane t2.  

Given an image plane point P, the CRC camera ray is found by first intersecting 

ray C0P with planes t0 and t1 to obtain points P0 and P1, then ray C1P1 is 

intersected with plane t2 to obtain point P2, and then control points P0, P1, and P2 

define the ray as explained above.  The CRC can be extended by appending 

additional viewpoints, each with its own transition region.  The resulting CRC 

rays are a sequence of line segments interconnected by quadratic Bézier arcs. 
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The CRC model can be used directly to support visualization techniques that 

require ray casting, such as volume rendering.  A CRC ray is traced by tracing 

the sequence of segments and arcs.  The arcs are traced by iterating parameter t 

in the Bézier equation below. 

P = �1 − t�`P4 + 2t�1 − t�Pa + t`P̀  Equation 4.1

Equal t increments of course do not correspond to arc steps of equal length.  For 

applications where the uniformity of the step is important one could evaluate 

Equation 4.1 with small steps in t and to use a piecewise linear approximation of 

the length of the arc step.  In addition to the ability to trace rays, ray casting also 

requires the ability to clip a ray with the bounding volume of the dataset.  

Computing the intersection between a Bézier ray and a plane is easily done by 

substituting in the expression of a ray point given by Equation 4.1 into the plane 

equation, which results in a quadratic equation in parameter t. 

 

Figure 4.10.  A visualization of the curved ray camera model. 
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Figure 4.11.  Illustration of desired fast projection operation. 

It is straightforward to trace the CRC rays as defined, but the approach of choice 

for interactive visualization of 3-D surface datasets remains feed-forward 

rendering through projection followed by rasterization.  Unfortunately, given a 3-D 

point P one cannot inexpensively compute the image plane projection of P with 

the CRC model as defined because the projection equation cannot be solved in 

closed form and a numerical solution is too expensive.  We implemented a 

numerical solution based on the bisection method and found solutions with sub-

pixel accuracy after an average of 10 iterations, too slow for interactive 

visualization of complex datasets.  Fortunately a small modification to the CRC 

model enables fast, closed-form projection of 3-D points. 
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4.2.2. Camera Model with Fast Projection 

We developed a fast projection operation based on the observation that it is 

advantageous to choose the three planes t0, t1, and t2 defining the transition 

region such that they intersect along a common line l.  This does not come at a 

significant loss of generality since planes t0 and t2 simply mark the beginning and 

the end of the transition region.  Given a 3-D point P to be projected, let A be the 

intersection of l with the epipolar plane C0C1P, and let Pi be the intersection 

points of line AP and the bundle of Bézier arcs (Figure 4.11).  Let Qi be the 

intersection points between the plane t2 and the same Bézier arcs.  Then lines 

PiQi are almost concurrent, and the near-intersection occurs close to the baseline 

C0C1 (see dotted circle). 

4.2.2.1. Desired Projection Operation 

If lines PiQi truly intersected at a point on C0C1, point P could be projected with 

the following steps: 

1. Intersect AP with the known Bézier arc b through Qn to obtain point Pn. 

2. Intersect PnQn with baseline C0C1 to obtain point R. 

3. Intersect RP with plane t2 to obtain Q. 

4. Intersect C1Q with plane t1 to obtain point S. 

5. Intersect C0S with the image plane. 

The first step implies solving a single variable quadratic equation, as discussed 

above (b is intersected with a plane through AP).  All other steps are simple line-

plane intersections.  Moreover the projection of point Q onto plane t1 using C1 

(step 4) and the projection of S onto the image plane (step 5) can be combined 

into a single projection by concatenating the projection matrices of PPC1 and 

PPC0.  PPC1 is defined by viewpoint C1 and image plane t1.  Points inside the 

frustum of PPC0 but outside the transition region are simply projected with PPC0.  
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Points inside the frustum of PPC1 but outside the transition region are projected 

with the concatenated projection matrices of PPC1 and PPC0.  The cost of 

projection does not increase as additional turns are added to the rays of the 

CRC.  The projection matrices corresponding to the additional turns are simply 

concatenated such that points are projected directly to the image plane, in one 

step. 

 

Figure 4.12.  The modified curved ray camera model for fast projection. 

4.2.2.2. Camera Model Modification to Enable Fast Projection Operation 

We slightly modify the CRC model in order to have a precise convergence of 

lines PiQi on baseline C0C1, such that the projection algorithm sketched above 

applies.  A modified CRC ray is redefined as follows (refer to Figure 4.11 again).  

Given a point on the image plane we compute points S and Q as before, using 

rays through viewpoints C0 and C1, respectively.  The left-most ray in plane 

C0C1Q remains the same as before, a quadratic Bézier arc b.  Then the CRC ray 

in the transition region is defined by rotating a line through point A from plane t0 
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to plane t2.  For each intermediate position, the line is intersected with b to define 

point Pn, and then QnPn is intersected with C0C1 to find point R.  The ray point P 

is defined by the intersection of RQ and line APn. 

 

Figure 4.13.  Comparison between the modified and original curved ray camera 

models.  The rays of the modified CRC model (left) are virtually identical to the 

original (right) CRC model with the advantage of fast projection. 

The modified CRC model switches gradually from C0 to C1 through a continuum 

of intermediate viewpoints on the baseline segment C0C1 (Figure 4.12).  Each 

intermediate viewpoint Ci is used to image all 3-D points located in a plane ti of 

the transition region.  The plane ti is defined by the line l common to planes t0, t2, 

and t1 (not shown) which define the transition region, and by a point Xn.  Xn can 

be defined in any epipolar plane e through C0C1 as the intersection between line 

CiQn and the Bézier arc b in plane e.  For example intermediate viewpoints Ca 

and Cb with the image planes ta and tb.  In other words, given a point P, the 

viewpoint to use depends on where line PA intersects the Bézier arc b.  If the 

intersection occurs close to Qn, the viewpoint to use is closer to C1. 
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Figure 4.13 shows the effect of the camera model modification.  The left most ray 

in each epipolar plane is the same as before, i.e. the ray through Qn remains a 

Bézier arc; the other rays change slightly.  As we will show these rays become 

conic arcs.  Lines PiQi of the modified model converge on the baseline C0C1 by 

construction and hence the projection algorithm above applies.  The rays of the 

modified CRC model are C1 continuous at both ends of the transition region, and 

they do not intersect, as shown in Appendix B. 

4.3. Graph Camera Applications 

4.3.1. Scene Exploration 

In conventional 3-D scene exploration the user positions and orients a PPC 

interactively in order to gain direct line-of-sight to various regions of the scene.  

When a discovered region is uninteresting, the effort of navigating to the region 

and back is wasteful.  We propose exploring 3-D scenes with a graph camera 

that continually adapts to the scene in order to reveal not only what is visible from 

the current position but also adjacent scene regions to which there is no direct 

line-of-sight.  The additional information displayed by the graph camera image 

assists the user in selecting a navigation path that is more likely to reveal regions 

of interest, increasing navigation efficiency.  We have developed several graph 

camera constructors which, given a 3-D scene and a current user position, define 

rays that circumvent occluders to sample multiple scene regions.  Most 

constructors can be used in combination but are presented here individually for 

clarity. 
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Figure 4.14.  A portal-based graph camera image.  A comparison of a portal-

based graph camera image (top, left and fragment right) and PPC image (middle, 

left) along with a visualization of the portal-based graph camera (bottom). 
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4.3.1.1. Portal-Based Constructor 

Portals such as doors, windows, and spaces between buildings in indoor and 

outdoor architectural scenes are natural gateways between neighboring scene 

regions.  We have developed a graph camera constructor that allows the user to 

see directly into adjacent scene regions.  In Figure 4.14 the graph camera 

captures a good view of the adjacent kitchen while the PPC sees only an 

uninteresting corner through the portal. 

  

  

Figure 4.15.  Occluder-based graph camera image.  The occluder-based graph 

camera image (top, left) is compared to a PPC image (bottom, left).  A ray 

visualization (right) of each is also shown. 

Given a 3-D scene with predefined portals and a current view PPC0, the portal-

based constructor builds a graph camera with a root frustum PPC0 and one leaf 

frustum for each portal visible in PPC0.  Each leaf frustum PPCi is defined by 
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bending the rays of PPC0 that sample the portal frame such that PPCi has a view 

direction normal to the portal plane.  In Figure 4.14 a single portal is visible, 

shown with green.  The root frustum PPC0 is shown with red and the graph 

camera rays are shown with blue.  As the user navigates new portals become 

visible.  The additional perspectives are introduced gradually by morphing the 

new view direction from the view direction of PPC0 to the normal of the portal 

plane.  As the user approaches a portal, the leaf frustum view direction is 

morphed back to the PPC0 view direction, which maintains visualization 

continuity as the user transitions through the portal. 

4.3.1.2. Occluder-Based Constructor 

The converse of a portal is an occluder—a large opaque object that hides 

potentially interesting scene regions.  We have developed a graph camera 

constructor that allows the user to see behind an occluder.  Given a 3-D scene 

with a predefined occluder bounding box B and a current view PPC0, the 

occluder-based constructor builds a graph camera with rays that reach around B.  

The graph camera is constructed with a split followed by a merge (Figure 4.6).  In 

Figure 4.15 the graph camera shrinks the occlusion shadow of the clock store to 

capture buildings and streets hidden in the PPC image, as well as the side faces 

of the clock store. 

4.3.1.3. Target Tracking Constructor 

The occluder-based constructor disoccludes around a particular object, without 

any concern as to what object is revealed behind the occluder.  We have 

designed a constructor that uses the disocclusion capability of the CRC to modify 

the camera in order to maximize the visibility of an object of interest, i.e. target, 

as the view, the target, and/or other objects move.  The CRC is controlled with 3 

parameters: the depth z0 from the first viewpoint C0 where rays should start to 
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bend, a translation amplitude a that defines the maximum lateral offset of the 

second viewpoint C1 with respect to C0, and a fraction f between -1 and 1 that 

modulates the maximum offset.  When f is -1/+1 the CRC rays are bent all the 

way left/right.  When f is 0 rays are straight and the CRC is a PPC.  We set both 

z0 and a as half the distance from C0 to the target.  The ray bending fraction f is 

updated dynamically for every frame with the following algorithm. 

1. If the target is visible for f = 0, set f to 0. 

2. Else if the target is visible with current f, keep current f. 

3. Else search for a new f such that the target is visible. 

Visibility of the target for a given value of f is determined efficiently at bounding 

box level: axis aligned bounding boxes are fitted to the objects and target, the 

bounding boxes are projected on the CRC image, and the image aligned 

bounding boxes of the projections are tested for intersection.  The target 

bounding box is enlarged a user chosen number of pixels to achieve a clear 

disocclusion of the target. 

The rays are bent only if needed and the same bending factor is kept if possible.  

The search for a new f value that disoccludes the target starts at the current f 

value and iteratively tests f values left and right at increasing distance.  If the 

search succeeds f is updated to the new value, else f is set to 0 (i.e. the target 

cannot be disoccluded).  The frame to frame change of f is capped to avoid 

abrupt changes in the visualization.  The gradual change of f comes at the cost of 

occluding the target for a few frames as the rays swing to the new value of f that 

disoccludes the target.  Figure 4.16 illustrates target tracking on a test dataset 

comprising 700 randomly placed and sized blocks.  The algorithm finds a CRC 

that disoccludes the red target.  The only state data maintained by the algorithm 

is the ray bending factor f, so it directly supports dynamic occluders, dynamic 

targets, and dynamic views. 
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4.3.1.4. Maze-Based Constructor 

The previously mentioned graph cameras have good disocclusion capability 

when the current user position is relatively close to a portal or an occluder.  

However, when the current position is far away, the root frustum projection of the 

portal or occluder is small, which limits the output image size of the visualization 

for the disoccluded regions.  Consider for example the bottom right image in 

Figure 4.1.  The left and right side street openings are too small to accommodate 

a good visualization of the side streets. 

We have developed a powerful graph camera constructor that achieves a good, 

user-controllable visualization of adjacent regions, independent of how big or far 

the portal is.  As a preliminary step, the set of possible desired user paths is 

 

 

 

Figure 4.16.  Curved ray camera used to disocclude a red target object.  The red 

object is not visible with the PPC (top), but the CRC (bottom) disoccluded the red 

target by bending the CRC rays (right). 
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modeled with a maze.  The maze defines virtual tunnels through which the user 

navigates during scene exploration.  The maze also serves as virtual scaffolding 

for constructing a graph camera for each user position.  The maze is built by 

fitting rectangular boxes to path intersections (Figure 4.17).  The boxes, which 

can have different sizes, are connected by tunnels with four planar faces.  The 

cross sections of tunnels are modulated with rings to allow modeling streets with 

building facades that are not aligned. 

  

Figure 4.17.  Visualization of a maze construction.  The maze was used to 

construct the graph camera from Figure 4.1. 

Given a 3-D scene enhanced with a maze and a user position inside the maze, a 

graph camera is constructed that allows the user to see from the current position 

to the first intersection ahead, as well as along the virtual tunnels emanating from 

the first intersection.  In order to allow the user to see behind, a similar graph 

camera is constructed pointing backwards.  In Figure 4.18 top, the user is located 

at the quad Qu.  The forward and the backward graph cameras each have 6 PPC 

frusta.  The graph for the forward graph camera is shown Figure 4.18, bottom, 

left. 
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Figure 4.18.  Visualization of the maze-based graph camera.  Top: Visualizations 

of forward and backward graph cameras from Figure 4.1.  Bottom: Graph of PPC 

frusta for forward graph camera (left) and construction details (right). 

The forward graph camera is constructed using the maze (blue lines in Figure 

4.18) starting from the user quad Qu.  The root frustum PPC0 with COP C0 is 

constructed using the user quad and a field-of-view parameter.  Points E and S0 

are defined by the intersection of PPC0 frustum edge C0Qu with the near and far 

intersection box faces.  Frustum PPC1 is constructed using a field-of-view 

parameter along with the points E, a, and b.  PPC0 rays that hit between E and b 

are directed to the left corridor, and rays between a and b are directed to the 

forward corridor (see green lines).  Points a and b are derived from ray split ratio 
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parameters.  For example, for an even (1/3, 1/3, 1/3) split, a needs to be half way 

between S0 and S1 and Eb needs to capture the left 1/3 of the rays of PPC0.  

PPC3 is constructed using a field-of-view parameter and the points E and S0.  

PPC4l is built using a field-of-view parameter and the points S0 and a.  The right 

half of the graph camera is constructed similarly. 

The raw image produced by the forward graph camera is shown in Figure 4.19, 

where the forward-right perspective is emphasized using a split ratio of (1/6, 1/6, 

2/3).  The raw images are texture mapped to a display surface that rotates the 

back image 180o while maintaining the connection to the top image.  The surface 

also splits the image along discontinuities to obtain the final image shown in 

Figure 4.1.  The final image shows in front (right panel) and behind (left panel) 

the user.  Each panel has a left, a center, and a right perspective.  The 

discontinuities between perspectives are defined by the visible parts of the 

vertical split lines through points S0, S1, S2, and S3 (Figure 4.18) and are shown 

as grey vertical lines in Figure 4.19.  At a conceptual level, the two step process 

first achieves the desired disocclusion effect and then rearranges the image 

regions optimizing visualization eloquence. 

 

Figure 4.19.  Top half of uneven split raw graph camera image. 
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Figure 4.20.  Illustration of curved ray camera construction for path tracking.  As 

the current position advances the transition planes are collapsed. 

The graph cameras are rebuilt for every frame.  Since the visibility of split lines 

can change abruptly from frame to frame, the depth of each split is averaged 

over 30 frames.  When the user reaches an intersection the graph cameras turn 

in 4 steps.  Let’s assume that the user desires to turn right.  First, the lateral 

perspectives of the backward camera are retracted, after which the backward 

graph camera becomes a simple PPC with a view direction aligned with the 

current street.  Then the forward left and forward center perspectives are 

retracted in favor of the chosen forward right perspective.  In step 3 the backward 

camera turns to show the old forward left street (the new backward center street).  

Finally the lateral perspectives of the forward and backward cameras are 

redeployed.  Retracting and deploying perspectives is done by changing split 

ratio parameters. 

4.3.1.5. Path Previewing 

We have developed an even more flexible constructor for visualizally exploring 

heavily occluded scenes using the CRC.  The constructor alleviates occlusions 

along a given visualization path through a 3-D dataset.  Visualization paths can 

be defined in a variety of ways, including by leveraging inherent properties of the 

dataset (e.g. a river cutting through a canyon, a road, a blood vessel), by 
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following an object that moves through the dataset, or by finding and saving a 

sequence of relevant views through interactive visualization.  As the turns in the 

path are typically chosen to circumvent occluders, following a path with a PPC 

limits the visualization to the first turn in the path.  We have developed an 

algorithm for constructing a CRC that previews forthcoming parts of the path.  

The CRC linearizes the path locally which allows the user to see beyond one or 

several turns in the path (Figure 4.21).  The algorithm takes two parameters as 

input: the current position along the path, and how much of the path should be 

linearized, i.e. the preview length.  Both parameters are under user control.  The 

user can advance the current position and increase or reduce how far ahead the 

visualization shows. 

For a given position and preview length, the CRC is constructed using control 

points (red dots in Figure 4.20) along the path (blue line).  Three consecutive 

control points that are not collinear define a turn.  The current position 

corresponds to the image plane.  When the image plane is about to enter a 

transition region, the planes t0, t1, and t2 defining the transition regions are 

collapsed progressively (see middle and right figures).  Conversely, as the 

current position advances, new control points enter the linearization region and 

their transition planes are deployed progressively. 

4.3.2. Scene Summarization 

Summarization aims to capture important regions of the scene and to arrange 

them on the canvas in an eloquent composition.  The resulting image should 

inventory, explain, and/or advertise the scene.  The summarization image is not a 

map, in the sense that global spatial relationships are not preserved.  

Summarization images break free from single perspective rules to achieve 

comprehensive scene visualization and optimal composition. 
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Figure 4.21.  Visualization of a curved ray camera with multiple bends.  The 

camera was used to render the bottom right image in Figure 4.9.  The blue line 

shows the path that follows the river.  The CRC conforms to a section of the path 

using 4 turns. 

A first conventional method for summarization is drawing.  The artist represents 

only certain scene regions and scales and rearranges them at will.  However, the 

method is laborious and requires drawing talent.  A summarization image can 

also be assembled from photographs or computer graphics renderings of the 

desired scene regions.  Sophisticated digital image editing tools allow collating 

the ingredients seamlessly.  However, the method is time consuming.  We asked 

a computer graphics student to replicate the graph camera cartoon town 

summarization image from Figure 4.2.  The resulting collage (Figure 4.22, left) 

was assembled in 8½ hours from 14 rendered shots.  Another disadvantage of 

collages is lack of 3-D continuity: a car driving down the streets of the cartoon 

town would move discontinuously, jumping from shot to shot.  A third 

conventional method for creating summarization images is to rearrange the 3-D 

models of important scene regions in a new 3-D scene which is then rendered 

with a conventional PPC (Figure 4.22, right).  The method has the advantage of 

3-D continuity—objects can move in the consistent 3-D space of the auxiliary 

scene.  However, the method requires remodeling the infrastructure that anchors 
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Figure 4.23.  Graph camera model visualization for multiple bends.  The camera 

was used to render Figure 4.2. 

We have also developed an interactive CRC constructor that allows the user to 

set all components of a two viewpoint CRC through a graphical user interface.  

The position of the second viewpoint C1 and the transition region controls how 

much and which way the CRC rays should bend, and the size of the transition 

region controls how abrupt the transition between the two viewpoints should be.  

The CRC components are manipulated and visualized in an overhead view of the 

scene while the user is also shown the corresponding CRC image for immediate 

feedback.  The image in Figure 4.24 was rendered with a CRC that was 

designed with the interactive constructor to capture the entire forward and right 

street branches. 

4.3.2.2. Recursive Maze-Based Construction 

Another method for building powerful 3-D scene summarization graph cameras is 

to use a maze as scaffolding that connects important scene regions, similar to 

the maze used in scene exploration.  Instead of stopping graph camera 

construction at the first intersection, the construction algorithm proceeds 
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Figure 4.25.  Maze-based summarization graph camera.  An example 

summarization image is rendered with a graph camera constructed using the 

recursive maze-based algorithm (left).  The camera model visualizations (right) 

show the shape of the camera overall and inside the bakery. 

First, the graph camera rendering algorithm needs scene geometry.  Providing 

high-resolution per-pixel depth for the video streams is a challenging problem 

which does not have a robust real-time solution yet.  Fortunately the rendering 

algorithm can be amended such that video streams can be combined into a 

graph camera without the need of per-pixel depth.  Given a frustum PPCi, the first 

projection of the sequence of projections to the root frustum PPC0 is 

implemented by the physical video camera.  This first projection “flattens” the 3-D 

scene to a 2-D image which is projected successively by the subsequent frusta.  

Consequently, rendering with a frustum PPCi of a physical graph camera is done 

without needing to know scene geometry by simply rendering a texture mapped 

quad using frustum PPCi-1.  The quad corresponds to the near face of frustum 

PPCi and the texture corresponds to the video frame acquired by the video 

camera of PPCi. 

The second problem is extrinsic calibration of the cameras, which we achieve by 

registration to a coarse geometric scene model (i.e. a proxy).  For the scene in 

Figure 4.4 we used a simple box model of the hallways.  Although the video 



 

 

159

cameras could be registered without a proxy using only 2-D correspondences, 

the proxy makes the registration robust and globally consistent. 

The third problem is finding a placement of the PPCs that is physically realizable.  

A narrow field-of-view is also desirable for the PPCs of a physical graph camera 

like the one used in Figure 4.4 in order to control the amount of perspective 

foreshortening along the corridors.  A large field-of-view wastes pixels on nearby 

side walls to the detriment of regions farther along the corridors.  Camera A was 

placed as far back as possible, against the opposite wall, yet its field-of-view is 

still slightly larger than desired, exaggerating the importance of the side walls of 

the central hallway.  A possible solution to this problem would be to push the 

camera back in software, which requires scene geometry.  The proxy would be 

adequate for the corridor walls but estimating the depth for a subject in the 

corridor is more challenging. 

The fourth problem is implementing the clipping planes which separate the PPC 

frusta.  We simulate near clipping planes using background subtraction, as 

illustrated in Figure 4.26.  The subject is located in the left branch of the corridor 

so the correct graph camera image should not show the subject in the right 

branch.  The video camera monitoring the right branch does not have the correct 

near clipping plane so it samples the back of the subject.  We simulate the 

correct image by erasing the subject using pre-acquired background pixels 

(Figure 4.4).  Since the pixels erased are not live, some applications could prefer 

that they be highlighted in red to mark the uncertainty (Figure 4.26, bottom).  

Deciding from which video feed to erase the subject is done based on the 

subject’s location, which is inferred by triangulation between two or more 

cameras.  A non-leaf video camera also needs far clipping planes, which are 

implemented by background subtraction, similar to near clipping planes. 

The fifth and final challenge specific to the physical implementation of graph 

cameras is the visualization of an object moving between connected frusta.  A 
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4.3.4. Geometry Approximations for High-Quality Rendering Effects 

Section 3.5.2 introduced the idea of replacing PPC depth images with occlusion 

camera depth images in order to obtain higher quality rendering effects such as 

reflections, refractions, and relief texture mapping at little additional rendering 

cost.  In certain cases, replacing PPC depth images with graph camera depth 

images, similar results can be achieved.  Using the graph camera, we have 

applied this approach to reflections, refractions, and ambient occlusion.  A graph 

camera geometric approximation can be used as an environment impostor for 

rendering reflections and refractions since the graph camera image captures 

more of the environment than a traditional environment map and therefore 

remains valid for many frames.  A graph camera image can also be used as 

geometric approximation for image space ambient occlusion where it produces 

more accurate results than a planar pinhole camera approximation. 

4.3.4.1. Graph Camera Depth Images 

The graph camera is constructed from a planar pinhole camera through a series 

of bending, splitting, and merging operations.  The result is a graph of planar 

pinhole camera frusta.  The rays of the graph camera are piecewise linear.  A ray 

changes direction as it crosses the shared face separating two frusta, but it 

  

Figure 4.27.  Graph camera model visualization.  The frusta are shown in red and 

a few rays are shown in white. 
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remains continuous, which makes the graph camera image continuous.  The rays 

of the graph camera for the maze in Figure 4.28 are shown in Figure 4.27.  The 

construction used a breadth first traversal starting from the entrance. 

 

  

Figure 4.28.  Graph camera environment map used for reflections.  The graph 

camera depth image (top) captures an entire 3-D maze (bottom, left) and a 

reflection is rendered using it (bottom, right). 

Projecting a point with the graph camera uses two steps.  First, the frustum 

containing the given 3-D point is found.  Then the point is projected directly to the 

output image with a 4-D matrix that concatenates the projections of all the 

cameras on the path from the current frustum to the root.  The frustum containing 

the point can be found with an octree or another hierarchical space subdivision.  
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4.3.4.2. Ray Intersection 

In order to intersect a graph camera depth image with a ray it is possible to follow 

the generic algorithm: interpolate the ray uniformly in 3-D space, and project 

each new point onto the graph camera image (Section 3.5.2.2).  However, since 

each graph camera frustum is a pinhole, the projection of a given ray is 

piecewise linear (Figure 4.29), which enables the following optimization.  Given a 

ray r, for each graph camera frustum Fi: 

1. Intersect ray r with Fi to produce 3-D sub-segment (si, ei). 

2. Project segment (si, ei) to graph camera image segment (pi, qi). 

3. Walk on (pi, qi) to find intersection. 

 

The algorithm computes the linear pieces of the ray directly by intersecting the 

ray with all the frusta, resulting in a set of sub-segments (si, ei).  This is more 

efficient than the generic algorithm which requires small 3-D steps just to model 

the breaking points of the piecewise linear ray with high fidelity.  Each frustum is 

a planar pinhole camera, so each sub-segment projection remains a straight line 

segment (pi, qi) in the output graph camera image.  The sub-segment is 

interpolated to search for the intersection step by step, in a similar manner to the 

generic algorithm. 

4.3.4.3. Reflections and Refractions 

Rendering reflections and refractions with a graph camera geometric 

approximation is virtually identical to the process described in Section 3.5.2.3.1.  

The graph camera can encode a complex environment into a single graph 

camera depth image producing more accurate reflections and refractions than 

those possible with a planar pinhole camera depth image (Figure 4.28). 
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4.3.4.4. Ambient Occlusion 

Ambient occlusion techniques add realism to local illumination models by 

approximating the amount of light a surface point receives based on how much of 

the environment is hidden by nearby geometry.  The computational cost is high 

since a ray has to be cast from each point in all directions.  Early 

implementations precomputed ambient occlusion in model space off-line [176], 

which precludes dynamic scenes.  Initial efforts of enrolling the GPU in 

accelerating ambient occlusion resorted to a large number (i.e. 128-1,024) of 

spherical shadow maps of the scene [120].  Our graph camera depth buffer 

ambient occlusion method builds upon an image-space technique introduced by 

Bavoil et al [14].  Their technique approximates the amount of ambient occlusion 

at an output pixel using the output image depth buffer.  They noticed that in order 

to sample occlusion at a pixel for an entire half plane it is sufficient to traverse 

one depth buffer segment.  The result is a fast ambient occlusion method that 

supports dynamic scenes.  However, the technique computes ambient occlusion 

as if the geometry seen by the output image contains all of the geometry in the 

    

Figure 4.29.  Visualization of a 3-D ray and its projection onto a graph camera 

image.  The 3-D ray (left) produces a piecewise linear projection on the graph 

camera image (right). 
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scene, which it does not, causing missing and unstable ambient occlusion 

artifacts. 

The horizon-based screen-space ambient occlusion algorithm [14] is fast 

because one can estimate occlusion in a half plane by traversing a single output 

image depth buffer segment.  In Figure 4.30 left, p is an arbitrary output image 

pixel.  Occlusion on the q side of ep is estimated by simply traversing pq, and 

casting of the rays ri is not needed.  This is enabled by the property that at any 

output pixel p, any plane through the pixel ray ep will project to a line.  This 

property needs to be maintained when porting the algorithm to non-pinhole depth 

buffers.  We have designed a graph camera model that enhances the output 

image depth buffer with samples visible from two nearby viewpoints and also 

exhibits the desired property.  The graph camera projection is equivalent to a 

series of conventional projections.  Once a plane is collapsed to a line by the leaf 

projection, the line is mapped to lines by subsequent projections and the property 

is maintained.  Using Figure 4.30 left again, pq remains a line after subsequent 

projections. 

   

Figure 4.30.  Screen-space ambient occlusion.  Shown are the algorithm (left) 

and visualization of graph camera model (right) used in Figure 4.3. 
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Figure 4.30 right visualizes the rays of the graph camera used to render the non-

pinhole depth buffer shown in Figure 4.3.  The graph camera has 3 sub-frusta: 

the output image frustum e up to a vertical plane through the splitting point s, and 

the left and right frusta l and r beyond.  The splitting point moves on the blue 

curve as the output image view revolves around the dragon.  The curve was 

designed off-line to move the splitting point smoothly behind the dragon as the 

dragon is seen sideways, in which case a conventional depth buffer suffices. 

4.4. Discussion 

The problem of occlusions can be solved by eliminating the occluder (i.e. 

cutaway techniques), by seeing through the occluder (i.e. transparency 

techniques), or by seeing around the occluder (i.e. multiperspective techniques).  

Even with the small-scale distortions of the CRC, the graph camera family does 

perturb global spatial relationships, which can lead to confusion.  This limitation is 

inherent to all dataset distortion and multiperspective visualization techniques.  

Therefore the graph camera is not suited for applications where images are 

supposed to mimic the images the user would actually see in the corresponding 

real-world 3-D scene, such as virtual reality, CAD, or interior design. 

Similar to the occlusion cameras, the graph camera family also needs a way, 

albeit indirect, of accessing the occluded data subset through which to route its 

rays.  They cannot, for example, disocclude the engine of a car with the hood 

closed.  One option is to combine the CRC with other disocclusion management 

techniques. 

4.4.1. The Graph Camera 

Performance: Graph camera images are rendered efficiently in feed-forward 

fashion leveraging a fast projection operation.  Performance was measured on a 
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Quad Core Xeon 3.16 GHz with 4 GB of RAM and an nVidia 280 GTX graphics 

card, for 1,280x720 output resolution (Table 4.1).  The frame rate remains 

interactive even for the graph camera with 35 frusta.  For the real world graph 

cameras the dominant computational task is background subtraction, which is 

implemented using CUDA 1.2. 

Limitations: The current maze-based constructor assumes straight maze edges 

and right angle 2-way, 3-way, or 4-way intersections.  As discussed, limitations 

specific to real-world graph cameras relate to video camera placement, clip 

planes, and to objects crossing between frusta.  Also the real-world graph 

camera depends on the robustness of the background subtraction algorithm.  

Each application should choose settings that produce an appropriate balance 

between false positives and false negatives.  For example, a false negative at the 

far plane incorrectly hides an object whereas a false negative at the near plane 

incorrectly shows an object from another frustum. 

Table 4.1.  Graph camera rendering frame rates. 

Scene Triangles Constructor Illustration Frusta FPS 

House 958K Portal Figure 4.14 1-6 27 

House 958K Interactive Figure 4.32 13 6.7 

Cartoon town 971K Occluder Figure 4.15 5 31 

Cartoon town 971K Interactive Figure 4.2 7 25 

Cartoon town 971K Maze Figure 4.25 35 5.2 

City 4,123K Maze Figure 4.1 12 12 

Real world 1 N/A Proxy Figure 4.4 3 9.0 

Real world 2 N/A Proxy Figure 4.31 4 9.5 
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Figure 4.31.  A real-world graph camera zooming example.  The video feeds 

provide sufficient resolution to zooming in on regions of interest. 

4.4.2. The Curved Ray Camera 

We have tested CRC visualization on 5 datasets: a city model (Figure 4.7, Figure 

4.8, and Figure 4.24), a ball and stick DNA molecule model [159] (Figure 4.9, 

middle row), the Engine Block volume dataset [41] (Figure 4.9, top row), a set of 

random blocks (Figure 4.16), and a canyon terrain dataset corresponding to a 

section of the Colorado river [157] (Figure 4.9, bottom row, and Figure 4.21). 

Quality: The CRC succeeds at alleviating occlusions in complex datasets while 

minimizing distortions.  Objects that traverse the region where rays transition 

between one viewpoint and the next deform only very little, resulting in a 

visualization effect comparable to that of a rigid body transformation.  The GUI-

based constructor allows the user to design the disocclusion effect interactively. 

The user can explore distant, occluded data subsets without modifying the 
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visualization context of nearby data.  The target tracking constructor keeps the 

target visible as the target, the view, and/or occluders translate, as long as a 

solution exists given the maximum ray curvature allowed by the user.  The path 

previewing constructor allows the user to visualize a pre-recorded path without 

being limited by the occlusions brought by the next few turns in the path. 

 

Figure 4.32.  A graph camera summarization which compresses the stairs to 

show two levels of the house. 

Performance: All performance numbers reported were measured on a Dual Xeon 

3.2 GHz Intel processor with 4 GB of RAM and an nVidia GTX 285 graphics card.  

The interface to the graphics hardware was implemented using OpenGL and the 

Cg shading language.  The output resolution was 1,280x720. 

All datasets except for the Engine Block are 3-D surface datasets and are 

rendered by projection followed by rasterization.  CRC projection is implemented 

in a vertex program.  The program first determines the CRC sub-frustum that 

contains the vertex.  If the vertex is inside a conventional PPC sub-frustum, the 

vertex is projected directly to the output image by multiplication with a 4-D matrix 

pre-computed by concatenating the modelview and projection matrices of all the 

viewpoints from the current viewpoint to the root.  If the vertex is inside a 

transition region sub-frustum, the vertex is projected.  For datasets where the 

triangles are small, conventional rasterization is a good approximation of the non-

linear rasterization mandated by the non-linear projection of the CRC.  Datasets 

with large triangles are subdivided as a pre-process.  In our case the only dataset 



 

 

170

that required subdivision was the city dataset due to large triangles used to 

model the ground (e.g. sidewalks, roads).  We have also implemented a 

geometry program that performs on demand subdivision but performance is 

lower than in the case of off-line uniform subdivision, which we attribute to the 

primitive emission bottleneck of GPU geometry programs. 

Table 4.2.  Curved ray camera rendering performance for datasets. 

Dataset 
Vertices 
x1,000 

Triangles 
x1,000 

Frame rate (Hz) 

PPC Graph Camera CRC 

Blocks 90 43 153 136 137 

DNA 2,170 4,112 48 32 23 

Canyon 4,287 2,168 99 56 52 

City 29,892 10,351 2.8 2.8 2.8 

Engine 256x256x110 vol. res. 7.9 6.7 4.1 

 

The side faces of the CRC frusta are planes.  For the Canyon and City datasets 

we perform view frustum culling at primitive group level using a simple uniform 3-

D grid.  We avoid triangle level clipping by enlarging the frustum of the CRC and 

discarding any triangle for which at least one of the vertices is outside the CRC 

frustum.  This is done with a simple geometry program that emits 1 or 0 triangles 

per incoming triangle.  Triangles do not need to be clipped with the separation 

planes between CRC sub-frusta; a triangle crossing such a plane is simply 

handled by projecting each one of its vertices with the projection function of its 

sub-frustum. 

Rendering performance is given in Table 4.2.  The geometry load figures 

correspond to primitives that pass view frustum culling.  We compare the CRC to 

a PPC (i.e. rendering the dataset with the root PPC0 of the CRC), and to a 

camera with C0 continuous rays that switches abruptly between the viewpoints of 
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the CRC.  The CRC renders all datasets comfortably except for the City dataset 

which is too large to fit on the graphics card, and which none of the 3 methods 

render quickly.  The ratio between PPC and CRC performance is at most 2.08; 

between the graph camera and CRC it is at most 1.39.  The CRC vertex 

projection performance is at least 12, 50, 222, and 83 million vertices per second 

for the first 4 datasets in the table, respectively.  These figures were computed by 

multiplying the frame rate by the number of vertices, which counts the entire 

frame time as projection time.  As such, the figures give a lower bound on 

projection performance. 

We measured performance for the Canyon dataset for CRCs with an increasing 

number of viewpoints.  Performance remains virtually unchanged even for as 

many as 8 viewpoints, which is expected since the few additional dot products 

needed to classify the vertex sub-frusta are a small cost compared to the vertex 

projection operation as a whole. 

The Engine Block dataset is volume rendered by ray casting.  For the transition 

region we derive the number of steps from the sum of the length of the original 

viewpoint C0 and C1 rays (i.e. P0P1 + P1P2 in Figure 4.10).  The numbers reported 

in the table correspond to the left Block Engine image in Figure 4.9 for the PPC 

and to the right image for the CRC.  The difference in performance is due to the 

fact that the volume covers a considerably larger fraction of the image for the 

CRC, and that the CRC rays travel longer through the volume. 

4.4.3. Geometry Approximations for High-Quality Rendering Effects 

Quality: Graph camera depth images enable quality reflections, refractions, and 

ambient occlusion.  Like for all sample-based methods, the quality of the results 

obtained with graph camera depth images is contingent upon adequate 

sampling.  The graph camera sampling rate is not uniform: it is higher closer to 

the initial frustum and is lower for the distant frusta.  The graph camera depth 
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image used here was constructed to capture the entrance at a higher resolution, 

where reflections are of highest quality (Figure 4.28).  Deeper into the maze the 

resolution decreases leading to aliasing artifacts due to the large output image 

projection of depth image pixels, a problem similar to inadequate shadow map 

resolution.  In Figure 4.33 the teapot is in the top left corner of the maze (see 

Figure 4.28), thus deepest in the graph camera depth image, where sampling 

insufficiency is noticeable.  Note however that the case presented here is 

particularly challenging: a smooth highly-specular surface reflects a contrasting 

checker pattern.  We use a graph camera depth image resolution of 1,920x1,175.  

A brute force solution is to increase the resolution further.  Another possibility is 

to break up the maze into several parts each with its own smaller graph camera 

depth image.  Lastly, hybrid sample-based/geometry-based techniques that 

incorporate “infinite frequency” edges into textures could also be used. 

 

Figure 4.33.  Undersampling artifacts on the floor reflection. 

Performance: The timing information reported here was collected on a 3.4 GHz 

Intel Xeon PC with 2 GB of RAM and an nVidia 8800 Ultra graphics card.  We 

used nVidia’s Cg 2.0 shading language with gp4 profiles.  An important 

performance factor is the number of steps along the projection of the ray.  

Coarse stepping reduces the number of steps for the graph camera depth image 
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as can be seen in Figure 4.34, where the average number of steps decreases 

from over 155 to 27.  The reflection of the main entrance where the graph 

camera impostor has highest resolution remains the hottest area on the teapot 

but only a few pixels have large step numbers.  The graph camera image is 

constructed at over 100 fps.  The average, minimum, and maximum frame rates 

for the path that follows the teapot through the maze are 45.5, 30, and 105 fps 

without antialiasing, and 26.8, 20, and 42 fps with 8x MSAA, respectively. 

  

Figure 4.34.  Graph camera image used to calculate a reflection.  Teapot location 

(left) and reflection (middle) alongside a visualization (right) of the number of 

steps with (bottom) and without (top) coarse stepping.  Brighter red indicates a 

large number of steps being taken. 

We investigated ambient occlusion performance for two quality occlusion 

sampling settings: regular (6 sampling directions and 6 steps per direction) and 

fine (32 and 20).  The blur kernel width was 21 pixels and the output image 

resolution was 1,0242 in both cases.  Average performance for the dragon scene 

(Figure 4.3) is 35 and 16 fps for the regular and fine settings, respectively.  

Figure 4.3 uses the fine sampling setting—the regular setting produces a noisier 

ambient occlusion, an issue orthogonal to the use of the graph camera depth 

buffer.  Rendering the locally illuminated output image, the graph camera depth 

buffer, and adding the ambient occlusion effect takes 5.9, 16, and 6 ms for the 

regular setting and 5.9, 16, and 40 ms for the fine setting, respectively.  For the 

conventional algorithm, rendering the locally illuminated output image and adding 
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the ambient occlusion effect takes 5.9 and 5.9 ms for the regular setting and 5.9 

and 32 ms for the fine setting, respectively.  Sampling occlusions in the graph 

camera depth buffer as opposed to the conventional depth buffer brings a 25% 

penalty, and most performance loss is brought by having to render the graph 

camera depth buffer of the 890K triangles scene.  However, in some scenes it is 

unnecessary to update the graph camera depth buffer for every frame.  The 

graph camera depth buffer does see more than what is visible in the output 

image which greatly extends its resiliency to output view changes.  For example 

the depth buffer shown in Figure 4.3 can be reused if the dragon is only seen 

from the front, which increases performance to 21 fps for the high setting, 

approaching the 26 fps of the conventional algorithm.  Another possible approach 

is to use a simplified version of the 3-D model when computing the graph camera 

depth buffer. 
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CHAPTER 5.  GENERAL PINHOLE CAMERA 

One of the significant limitations of the planar pinhole camera not yet addressed 

is the uniform sampling of the image plane.  The general pinhole camera (GPC) 

addresses this problem by providing a flexible sampling rate.  Of course, one 

could chose to resample a conventional PPC image to any desired set of 

sampling locations, but such an approach is only approximate since it computes 

the desired samples by interpolation and not by actually sampling the data to be 

visualized.  The approximation is particularly poor for large sampling rate 

variations when an adequate approximation by interpolation requires a 

prohibitively high resolution for the input image. 

We present the general pinhole camera (GPC) model that supports any set of 

sampling locations on the image plane.  The GPC rays are defined by a pinhole 

and the desired image plane sampling locations.  The GPC image is rendered by 

directly sampling the data to be visualized at the desired sampling locations.  

GPC visualization is versatile—it supports many types of data, including surface 

geometry, volume, and image data.  GPC visualization is also efficient—complex 

datasets are rendered interactively with the help of graphics hardware.  

Moreover, if the application demands it, a GPC image can be resampled at little 

cost into a conventional PPC image.  We demonstrate the advantages of the 

non-uniform sampling afforded by the GPC in three contexts: remote 

visualization, focus-plus-context visualization, and antialiasing. 

In order to visualize a dataset at a site other than the site where it was computed 

or acquired, one approach is to transfer the data.  However, data transfers 

become more and more challenging as data size increases continue to outpace 
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networking bandwidth increases.  Moreover, replicating visualization capabilities 

at all user sites also scales poorly.  A second approach overcomes these 

disadvantages by computing the desired visualization image at the remote site, 

followed by transferring the image to the local user site.  No dataset transfer or 

replication of visualization capabilities is required.  However, such a remote 

visualization approach suffers from reduced interactivity.  Even though the 

bandwidth requirement for transferring an image is greatly reduced compared to 

transferring a large dataset, the image has to be transferred in real time and 

bandwidth remains a bottleneck, affecting the frame rate.  The solutions of 

reducing image resolution or aggressive compression are only palliative. 

We propose to improve interactivity in remote visualization by transferring GPC 

images instead of conventional PPC images.  The idea is to reuse a GPC image 

at the local site to compute several high-quality output frames, without the need 

of any additional data from the remote site.  The GPC is designed to produce 

images with a sampling rate higher at the center and lower at the periphery.  The 

resulting image has size and coherence similar to those of a PPC image, thus 

the transfer costs are comparable.  At the local site the GPC image is resampled 

into a conventional PPC output frame at interactive rates.  The higher sampling 

rate at the GPC image center allows the user to zoom in with little quality loss.  

Once the output frame sampling rate exceeds that provided by the GPC image, a 

new GPC image is requested and transferred from the remote site.  The GPC 

also has a larger field-of-view than the output frame, which allows the user to 

rotate the view direction without the need of transferring new images.  Like the 

PPC, the GPC is a pinhole so a GPC reference image cannot accurately support 

viewpoint translation due to occlusions.  However, the approximate translation 

support provided is sufficient to allow the user to select a novel viewpoint for 

which a new GPC image is rendered and transferred. 

In Figure 5.1 the PPC and GPC reference images have the same size (800x480) 

and field-of-view (90o).  The output frames are 600x360 in size and have a 
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smaller, variable field-of-view.  The GPC allows zooming in with good results.  

Frames are computed from a GPC at the rate of 525 frames per second. 

   

   

 

  

Figure 5.1.  General pinhole camera used for remote visualization.  Top: 

Conventional PPC reference image and two output frames resampled from it.  

Middle: The GPC reference image and corresponding frames.  Bottom: Same 

frames rendered from actual geometry data for comparison.  The GPC image 

has a higher sampling rate at the center which produces higher quality frames 

when zooming in. 

The second context in which the GPC infrastructure pays dividends is focus-plus-

context visualization.  Many methods have been developed in visualization and 

computer-human interaction that capitalize on the perceptual advantages of 

visualizing a region of interest in detail (i.e. focus) while keeping it seamlessly 

integrated into the surrounding area (i.e. context).  The GPC naturally supports 

higher sampling rates for one or several focus regions.  We describe a GPC 
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The GPC proves to be a powerful tool in a third context—antialiasing.  As the 

acuity of measuring instruments and the sophistication of simulations increase, 

visualization will face the increasing challenge of alleviating mismatches between 

output image resolution and dataset resolution.  Antialiasing techniques can 

prevent the disturbing visual artifacts that occur when the dataset resolution 

exceeds the output image resolution.  Antialiasing for image data is a solved 

problem.  Antialiasing for 3-D data is more challenging, requiring the computation 

of multiple color samples for each output pixel.  When the resolution mismatch is 

severe, the required supersampling factor is large, making conventional full-

frame antialiasing prohibitively expensive.  A possible approach is to address the 

resolution mismatch offline by precomputing lower levels of detail (LoDs), which 

is challenging and delays the visualization of real-time datasets. 

  

Figure 5.3.  General pinhole camera used for extreme antialiasing.  GPC-based 

361x extreme antialiasing (left) and conventional hardware supported 16x 

antialiasing (right).  Images are magnified at 600% for illustration purposes. 

We describe a GPC variant that capitalizes on the fact that extreme 

supersampling levels might only be needed in small regions of the output image.  

The GPC allows supersampling locally at very high levels without substantially 

increasing the overall memory or rendering cost.  In Figure 5.3, left, a GPC 

renders the 322 pixel screen area covered by the tree with 361 color samples per 

pixel using an off-screen framebuffer tile which produces a high quality output 

image, bypassing the need for challenging LoD computation.  Note that the tree 
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model has only 9K triangles so rendering load is not a factor.  With conventional 

antialiasing serious minification artifacts occur even for a high 16x setting. 

 

Figure 5.4.  The generic general pinhole camera model. 

5.1. Camera Model 

The general pinhole camera model is defined by a center-of-projection C (Figure 

5.4), an image plane specified by a coordinate system with origin O and axes (x, 

y), and a set S of N sampling locations si(ui, vi), where ui and vi are the image 

plane coordinates of sample si. A GPC ray is defined by the ordered pair (C, 

O+xui+yvi).  This generic model is tailored to an application in three steps: 

• Sampling location selection: The actual image plane sampling locations 

are specified based on the application’s goal. 

• Rendering: Rendering algorithms are devised based on the sampling 

location pattern.  The considerations are efficiency and support for a broad 

range of data types. 

• Display: A mapping between the uniform pixels of the display and the non-

uniform GPC sampling locations is specified. 
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5.2. General Pinhole Camera Applications 

5.2.1. Remote Visualization 

In conventional remote visualization the images received from the server are 

ephemeral—any view change requested by the user renders them obsolete and 

new images have to be transferred.  It is our goal to design images which contain 

information sufficient for several visualization frames in order to reduce the 

frequency of image transfers and thereby improve interactivity. 

5.2.1.1. Prior Work 

The motivation for remote visualization [69] includes immediate access to remote 

datasets without off-line downloads; visualization of complex datasets without the 

need for local high-end storage and visualization capabilities; and visualization 

without full disclosure of the datasets [75]. 

One general remote visualization strategy is to reduce the visualization dataset 

on the server to a size that can be transmitted by the network and visualized by 

the client.  The dataset reduction is performed using one or a combination of 

techniques, including multiresolution and level-of-detail [22, 92], progressive 

refinement [21, 61], feature extraction [57, 89], occlusion culling [49, 117], and 

data compression [64, 88]. Unique strengths of this strategy include the ability to 

leverage client visualization capabilities, and the ability to accumulate data at the 

client, which, over time, leads to reduced dependence on the network.  

Disadvantages include the reliance on visualization capabilities at the client, the 

need of good a priori estimates for the values of the parameters of the data 

reduction techniques employed, and the need for data type specific tools at both 

the server and client. 
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A second general remote visualization strategy is to relieve the client of all 

visualization duties.  The client transmits the desired visualization view and 

parameters, the server renders, compresses, and sends the visualization frame, 

which is received, decompressed, and displayed by the client.  The strategy is 

appealing because of its portability—it gives access to visualization to any client 

that can display an image (i.e. a terminal), and because of its generality—any 

type of data and any visualization algorithm is supported as long as it is 

supported by the server.  Leveraging X Window System [109] transport 

infrastructure and VNC [134] application portal technology, generic remote 

visualization systems have been developed by academia [73, 78, 150] and 

industry (e.g. Vizserver [113]) to support thousands of heterogeneous clients.  

The main challenge is the network bandwidth bottleneck which limits frame rate 

and resolution.  The bottleneck is alleviated by high performance image 

compression / decompression schemes which run in parallel [94], or with the help 

of graphics hardware [149]. 

The importance of optimal work-load partitioning between server and client was 

also recognized by Luke et al. who propose a remote visualization framework 

[93] that provides a third, hybrid, partitioning scheme: the client receives images 

enhanced with per-pixel depth which are rendered locally for higher frame rate 

and lower latency.  Another example of such a hybrid strategy is the Visapult 

system [15], where the final image is composited in sort-last fashion on the client, 

but this time the motivation is to lower the computational burden at the server. 

The GPC assisted remote visualization approach we propose falls in this hybrid 

category: the image received by the client is resampled to produce several output 

visualization frames.  The GPC produces a 2-D image that can be compressed 

or composited with algorithms devised for conventional images, making it 

suitable for straight-forward integration within existing remote visualization 

frameworks. 
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5.2.1.2. Sampling Location Selection 

The sampling locations are chosen such that the GPC image anticipates view 

changes requested by the user.  View rotations are easily supported using a 

larger field-of-view and a higher resolution for the reference image than for the 

output frame.  Another common view change in visualization applications is 

zooming.  Zooming in by resampling a conventional PPC image leads to 

blurriness as the original sampling rate is exceeded.  In order to alleviate the 

quality loss as the user zooms in, the GPC image needs to have a higher 

sampling rate at the center, anticipating the zoom in operation.  Compared to a 

PPC image of same size, the higher density of samples at the center of the GPC 

has to come at the cost of a lower sample density at the periphery, which is 

reasonable since the user is likely to concentrate on the center of the image. 

 

Figure 5.5.  Sampling pattern used for the general pinhole camera remote 

visualization application. 

We choose a sampling pattern with a constant and higher sampling rate at the 

center of the image (blue in Figure 5.5) and a lower sampling rate at the 

periphery (red).  The samples are specified as a distortion of an original PPC 

image (grey).  Denser samples produce a magnification and sparser samples 

produce a compression of the resulting GPC image (Figure 5.6).  The distortion 
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is specified with 3 parameters w, h, and zf which define the size and zoom factor 

of the central region C. Larger w, h, and zf values allow zooming in longer with 

good quality at the cost of a lower quality at the periphery of the GPC image.  

Here w, h, and zf were chosen as W/2, H/2, and 3, where W and H are the 

dimensions of the GPC image. 

It remains to specify the samples at the transition region.  The constraints are 

continuity with the central region at the inner boundary and the image frame at 

the outer boundary.  C0 continuity at both boundaries ensures that all of the 

original field-of-view is sampled.  C1 continuity at the inner boundary ensures that 

the sampling rate is continuous from the transition to the central region.  The 

simplest expression that satisfies these three conditions is a quadratic.  Each of 

the four regions L, B, R, and T defined by the diagonals of the central rectangle 

has its own distortion expression.  For L the horizontal distorted coordinate ud is 

given by: 

bc�b� =  d4b` + dab + d` Equation 5.1

where u is the undistorted horizontal coordinate (Figure 5.7).  The coefficients ai 

are the same for the entire region and are computed by solving a linear system of 

three equations with three unknowns: 

bc�be� = be 

bc�bf� = g2 + hbf − g2 i �	�  

bcj �bf� = 1�	 

Equation 5.2

The first two equations ensure sampling continuity at the outer and inner 

boundaries of the transition region.  The third equation ensures sampling rate 
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continuity between the transition and central regions.  Once ud is known, the 

vertical distorted coordinate vd is computed using the constraint that the sample 

be distorted on a line towards the center of the image.  The sampling rate 

increases from the outer to the inner edge of the transition region (ud”(u) is a 

positive constant).  The lowest sampling rate is ud’(ul), which is 0.333 for this 

example, as can be verified in Figure 5.5 where the grey rectangles are three 

times as dense as the red rectangles at the periphery.  The highest lower bound 

on the sampling rate is of course achieved when the sampling rate is maintained 

constant across the transition region.  This would yield here a minimum sampling 

rate of 0.652, but abandoning the sampling rate continuity requirement causes 

visual artifacts. 

 

Figure 5.6.  Correspondence between general pinhole camera samples and 

image. 

In summary, a GPC with WxH sampling locations is defined by a PPC with 

resolution WxH, a central rectangular region with a magnification factor, and 4 

quadratic distortion expressions, one for each of the sub-regions of the transition 

region. 
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5.2.1.3. Rendering 

5.2.1.3.1. Ray casting 

Each sampling location defines a GPC ray.  Ray casting or ray tracing with the 

GPC is straightforward.  Instead of following the rays of a conventional PPC, the 

rendering algorithm follows the GPC rays.  Like Wang et al. [161], we leverage 

this fact to provide GPC volume rendering support by ray casting on the GPU 

(Figure 5.8).  Similarly, surface geometry data can be rendered with a GPC using 

a ray tracer.  As new graphics architectures become more programmable [140], 

ray tracing is likely to become a serious competitor to feed-forward rendering.  

For now, rendering by projection followed by rasterization remains the preferred 

approach in interactive rendering. 

5.2.1.3.2. Feed-Forward Rendering 

Feed-forward GPC rendering has to overcome two challenges: projection and 

rasterization.  GPC projection is straightforward.  A 3-D point P is first projected 

to coordinates (ud, vd) using the PPC associated with the GPC.  Then GPC 

image coordinates (u, v) are computed by inverting the distortion.  For the central 

rectangular region (C in Figure 5.6), the distortion is a simple linear scaling, thus 

inverting it implies solving a linear equation.  For the transition region inverting 

the distortion implies solving a quadratic.  Using Equation 1 again, for region L 

the quadratic equation that provides the GPC image coordinate u of P is: 

d4b` + dab + d` − bc = 0 Equation 5.3

As before, the GPC image coordinate v of P is obtained using the fact that the 

line defined by (u, v) and (ud, vd) passes through the center of the rectangular 

region C. 
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The construction of the GPC causes rasterization to become non-linear.  The 

challenges posed by non-linear rasterization affect all camera models described 

up until now.  Details of how these challenges are overcome will be presented in 

Chapter 6. 

 

Figure 5.7.  General pinhole camera distortion at the transition. 

5.2.1.4. Display 

Once the GPC image is rendered, it is ready to be compressed conventionally 

and to be sent to the client site.  Once received, the client application uses the 

GPC image to reconstruct visualization frames for the user at interactive rates.  

Rotations and zoom changes are handled by resampling the GPC image to the 

PPC, modeling the view of the current frame.  Each pixel p of the current frame is 

set in three steps; the corresponding 3-D point P on the PPC image plane is 

computed first, then P is projected onto the GPC image plane, and finally p is set 

to the GPC image color at the projection location.  The resampling cost is small 

and bounded by the output frame resolution.  Resampling the GPC image 

produces correct results because the center-of-projection of the output frame 

PPC coincides with the center-of-projection of the GPC.  View dependent 

rendering effects are supported (e.g. transparency, reflections, and refractions). 

Like any pinhole, the GPC does not support viewpoint translations.  In order to 

allow the user to change the viewpoint we provide approximate translation 
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support in one of two ways.  The less expensive but also the more approximate 

way is to assume all GPC samples lie in a vertical plane.  There is no motion 

parallax within the 3-D dataset, but the approximation enables selecting the next 

viewpoint.  The second way is based on 3-D image warping [102]—the GPC 

image is enhanced with per pixel depth, which is then used to reproject the GPC 

samples during viewpoint translation.  3-D warping comes at the cost of the 

additional channel for the GPC image.  Moreover, 3-D warping reuses color as is, 

thus effects like reflections are not handled correctly, and when new surfaces are 

exposed disocclusion errors occur (Figure 5.9).  3-D warping does however 

provide correct motion parallax, a strong visual cue in 3-D data visualization.  

During translation a red frame border indicates that the visualization is only 

approximate.  The user can request a new GPC image at any time. 

 

  

Figure 5.8.  General pinhole camera volume rendering example.  Volume 

rendering GPC image (top) and two frames resampled from it (bottom). 
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5.2.2. Focus-Plus-Context Visualization 

5.2.2.1. Prior Work 

Focus-plus-context visualization uses an inequitable screen real estate allocation 

favoring data subsets deemed more important, an idea introduced by the fisheye 

views [48].  The approach is supported by the way our visual system works, both 

at high level—we concentrate on a small part of what we see and rely on the 

background for general situational awareness, and at low level—the density of 

receptors on the retina is non-uniform.  Focus-plus-context has been applied to 

2-D image data, either acquired or rendered from 2-D primitives, including 

hierarchies [79], graphs [168], and maps [122].  While these techniques apply a 

2-D magnification lens to emphasize the focus region, the Mélange system [38] 

resorts to mapping the 2-D image data to a 3-D surface designed to emphasize 

several focus regions, while compressing less interesting connecting context. 

The magnification of the focus region implies an increased sampling rate.  

However, most computer displays are designed for a uniform sampling rate and 

mapping a focus-plus-context image to such a conventional display requires 

distortion.  An alternative is to build displays with a variable pixel density that can 

display a focus-plus-context image directly [12].  The challenges are difficulty in 

changing pixel density, abrupt pixel density changes, and bulkiness. 

Focus-plus-context techniques for 3-D surface geometry data typically apply a 3-

D space distortion followed by conventional visualization [23].  The distortion has 

the potential to reveal subsets of interest otherwise occluded [37], but has the 

disadvantages of difficult distortion design and distortion of the focus regions.  

These difficulties are avoided by distorting the camera rays as opposed to the 

geometry data, as demonstrated by Wang et al. for volume data [161].  The 

context and focus regions are essentially rendered with conventional cameras 

with various resolutions while the distortion is confined to the transition area.  Our 
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GPC focus-plus-context technique is similar to the Wang et al. approach in that 

the distortion is applied at camera model level.  However, the GPC is a general 

method that supports many types of data, including surface geometry data and 

that offers great flexibility for designing the transition region, including for 

achieving sampling rate continuity.  Compared to space distortion techniques the 

GPC is a pinhole thus it has no disocclusion capability, but the GPC avoids the 

disadvantages of difficult distortion design and distortion of the focus regions. 

5.2.2.2. Sampling Location Selection 

A GPC model similar to the one described for remote visualization can also serve 

for focus-plus-context visualization.  The magnified central rectangular region is 

equivalent to a focus region.  A focus-plus-context GPC is obtained by extending 

the remote visualization GPC model as follows: 

• The focus region should not necessarily be centered, which adds two 

parameters u0 and v0 defining the rectangle center, 

• The transition to context region should not necessarily extend all the way 

to the edge of the image, which adds another parameter tw to encode the 

width of the transition region, 

• More than a single focus region should be allowed, however the focus 

regions will be kept disjoint and their number will be a small constant, 

which facilitates interactive rendering. 

Since the focus region is now surrounded by context, it is of interest to maintain 

sampling rate continuity at the outer edge of the focus region.  To accommodate 

this additional constraint a fourth coefficient is needed for the distortion equation 

(Equation 5.1): 

bc�b� = d4bk + dab` +  d`b + dk Equation 5.4
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The 4 coefficients are found with the following linear system: 

bc�be� = be 

bc�bf� = b4 + bf − b4�	  

bcj = �bf� − 1�	 

bcj �be� = 1 

Equation 5.5

Figure 5.10 illustrates the sampling rate at the transition region: it starts out at 1.0 

(same spacing between first two red lines and the grey lines), then decreases 

(minimum value here is 0.59), and then increases to match the sampling rate of 

the central region (here 3.0). 

  

Figure 5.9.  General pinhole camera used for 3-D warping.  Approximate 

translation support by 3-D warping (left) and ground truth for comparison (right). 

5.2.2.3. Rendering and Display 

Once the GPC is built, ray casting for volume rendering or for surface rendering 

can proceed like before.  For feed-forward rendering the projection operation is 

slightly more complicated.  Like before, a 3-D point P is first projected with the 
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PPC to p.  Then the focus regions are consulted sequentially and if one contains 

p, the GPC image coordinates are computed by solving the cubic Equation 5.4 

with unknown u.  Since the focus regions are disjoint, at most one cubic equation 

is solved per projection.  Rasterization does not change.  Adaptive subdivision 

works well for a focus-plus-context GPC since the context region does not 

require subdivision.  Whereas in the remote visualization case the GPC image 

was an intermediate data structure used to create the output frame presented to 

the user, for focus-plus-context the GPC image is displayed as is. 

 

Figure 5.10.  Sampling rate continuity at the transition region edges. 

 

5.2.3. Extreme Antialiasing 

When the resolution of the data to be visualized exceeds the resolution of the 

output image aliasing artifacts occur.  Regularly sampled data (e.g. 2-D image 

data or 3-D volume data) can be easily downsampled to match the output 

resolution.  Reducing the resolution of geometry is more challenging.  Many 

techniques for computing lower complexity versions of a 3-D geometric model 

have been proposed, but no perfect solution exists.  LoD computation is slow, 

which is inadequate in real-time visualization, it depends on the specifics of the 

data, which requires specialized algorithms and manual fine tuning of parameter 

values, and transitions between LoDs often cause abrupt output image changes. 

Instead of reducing geometric complexity to fit the output image, an obvious 

alternative is to temporarily increase the output image resolution to capture the 

complex geometry well, and then to convert the auxiliary image into the desired 

output image.  The approach is appealing because the resolution mismatch is 

resolved in the image domain, where it is straightforward.  The approach has two 
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implications.  First, the geometry is rendered at full complexity.  Whereas 

employing LoDs also reduces rendering load in addition to improving visual 

quality, graphics hardware can now handle many datasets at full geometric 

complexity.  For such datasets this first implication does not pose problems. 

The second implication is that the framebuffer needs to be supersampled to 

accommodate the complex geometry.  Conventional full-screen antialiasing 

cannot and should not be used for this purpose.  Consider a dataset where high 

geometric complexity is confined to a few clusters and let’s assume that the 

largest supersampling factor demanded by any of the clusters is 1,000 color 

samples per pixel.  A 1,000x supersampling of the entire output image is and will 

remain prohibitive for the foreseeable future.  We have developed a GPC variant 

that enables supersampling locally with extreme supersampling factors at small 

and controllable additional framebuffer memory and rendering costs. 

5.2.3.1. Prior Work 

Mipmapping [166] is an effective hardware supported technique for avoiding 

minification artifacts when rendering from image data.  Antialiasing surface 

geometry however remains challenging.  By combining supersampling with 

multisampling, which only supersamples coverage and shades once per 

fragment, today’s ultra high-end nVidia [108] and ATI [9] GPUs achieve a full-

screen total antialiasing level of 64x (i.e. 8x8).  While this is adequate for 

smoothing triangle edges in most cases, it is insufficient for avoiding minification 

artifacts when rendering triangles with a small screen footprint.  For such 

triangles a higher level of true supersampling is needed.  Full-screen true 

supersampling at extreme levels (e.g. 1,024x) will remain impractical for the 

foreseeable future.  However, extreme supersampling is only needed for the 

screen areas with extreme complexity.  The GPC enables feed-forward rendering 

with adaptive supersampling, a practice reserved so far for ray tracing [51].  
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extreme antialiasing (XAA) GPC there is no transition region.  For Figure 5.11 the 

XAA GPC camera model has two supersampled regions, one for the green-blue 

cluster and one for the red-blue cluster.  The supersampling factors are 256x (i.e. 

16x16) for the green-blue cluster and 1,024x (i.e. 32x32) for the red-blue cluster.  

When the view changes or if the clusters are dynamic, the GPC is updated to 

track the clusters. 

5.2.3.3. Rendering 

The rendering algorithm uses off-screen framebuffer space.  A rectangular tile is 

assigned to each supersampled region.  A triangle t is rendered as follows: 

1. Project t to t’ conventionally 

2. If t’ intersects the output image, rasterize conventionally 

3. For each supersampled region SSRi intersected by t’ 

a. If t’ is completely inside SSRi, map t’ to the off-screen tile Ti of SSRi 

and rasterize t’ in Ti 

b. If t’ crosses the border of SSRi,, intersect bounding box of t’ with 

SSRi to obtain bb, compute rasterization expressions Ei(t) at the 

four corners of bb as well as the barycentric matrix of t, BM(t), and 

finally rasterize bb using Ei(t) and BM(t). 

In Figure 5.11, right, both tiles are 600x720 pixels in size which is sufficient to 

host the supersampled projections of the cluster volumes.  A triangle is rendered 

at most n+1 times, where n is the number of supersampled regions.  The 

algorithm clips with a tile at bounding box level and edge sidedness is enforced 

during rasterization, which is advantageous since most primitives that map to a 

tile have a small footprint.  The red-blue particles are rasterized conventionally 

and only a few large background triangles (yellow terrain) are rasterized as 

clipped bounding-box quads. 
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5.2.3.4. Display 

The XAA GPC image is an intermediate representation from which the final 

image is computed.  The screen pixels covered by the clusters are reconstructed 

by filtering the supersampled tiles.  A straightforward approach is to use 

mipmapping.  A more accurate approach is to actually convolve with a high 

resolution kernel, which remains efficient since the number of output pixels 

covered by the clusters is small.  We use flat kernels with 1 pixel support, which 

means that an output pixel is reconstructed as the average of k color samples, 

where k is the supersampling factor for the cluster region. 

5.3. Results and Discussion 

We tested our approach on several datasets including a Rayleigh-Taylor 

instability surface (Figure 5.1) [81], a Ionization Front volume dataset (Figure 5.8)  

[164], the Crater Lake terrain dataset (Figure 5.9) [157], and a DNA molecule 

triangle mesh (Figure 5.2) [159].  All performance numbers were measured on a 

3.16 GHz Intel Xeon workstation with 4 GB of RAM and an nVidia GeForce GTX 

280 graphics card. 

5.3.1. Remote Visualization 

5.3.1.1. Rendering Performance 

All visualization algorithms described run on the GPU.  The adaptive subdivision 

GPC rendering algorithm uses multiple geometry shader passes to circumvent 

the bottleneck at emitting primitives.  At each pass a triangle is subdivided into at 

most 4 triangles.  The triangle data is piped in from one pass to the next using 

two vertex buffers.  Triangles that do not need subdivision are simply passed 

through.  The subdivision ends if a pass does not subdivide any triangle, or after 
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a maximum number of passes (e.g. 6).  The resulting triangles are rasterized with 

a single fragment shader pass. 

We have compared the performance of the GPC algorithms for rendering 

geometry data on several resolutions of the Crater Lake dataset obtained by 

downsampling the original resolution (Table 5.1).  Nonlinear Rasterization is 

consistently outperformed by Adaptive Subdivision due to bounding box 

estimation, geometry to fragment shader communication, and overdraw costs.  

Compared to the approximate algorithm of GPC projection followed by 

Conventional Rasterization, the Adaptive Subdivision quality advantage comes at 

a smaller relative cost for finer datasets. 

Table 5.1.  Performance for various resolutions of the Crater Lake dataset. 

Triangles (x106) 
Nonlinear 

Rasterization (Hz) 
Adaptive 

Subdivision (Hz) 
Conventional 

Rasterization (Hz) 

0.12 3.2 15 55 

0.5 1.1 9.1 18 

2 0.33 5.3 6.7 

 

For volume rendering, the cost of distorting the PPC ray to obtain the GPC ray is 

dwarfed by the cost of stepping along the ray.  For Figure 5.8, the GPC image 

resolution is 1,200x720, the volume resolution is 700x496x496, the number of 

ray steps is capped at 1,024, and the GPC image is rendered at 3.51 Hz.  For a 

comparable PPC the frame rate is 3.93 Hz, difference due to a higher average 

number of steps for the GPC (rays focused at volume center). 

Resampling a GPC image to the output frame runs at hundreds of frames per 

second on the GPU and it is even sufficiently light weight to run interactively on 

the CPU (13 Hz for frames in Figure 5.1).  Like resampling, 3-D warping has cost 

bounded by the resolution of the GPC.  On the GPU the 864K points of a 
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1,200x720 GPC are reprojected at over 60 fps.  Even in software the GPC is 

warped at 7 fps using simple 1x1 splats for reconstruction.  The GPU can easily 

handle more sophisticated reconstructions such as connecting the GPC samples 

in a triangle mesh. 

5.3.1.2. Image Data 

Building GPC images from image data is straight forward.  Each pixel in the GPC 

is found in the input PPC by evaluating the second order distortion polynomial 

given in Equation 5.1.  Figure 5.12 shows a GPC image of the Chicago area 

which allows the user to zoom in at the center without the pauses needed to 

download the next level-of-detail which are common to current applications. 

5.3.1.3. Communication Performance 

We have integrated the GPC framework into an application that sends images 

between a visualization server and a visualization client via TCP/IP.  For a typical 

path through the Crater Lake dataset, the user requested two GPC reference 

images, which were used at the client to create 1,800 output frames.  The GPC 

resolution was 2,560x1,440 and the output frame resolution was 1,280x720 (i.e. 

720p).  The average GPC reference image size was 8 MB for color and 7 MB for 

depth, using non-lossy LZW compression.  Over the campus 100 Mb network the 

average time for transferring a GPC reference image with depth is 5.04 seconds.  

All transfer times are measured from the time the client issues the request to the 

time the client has finished uncompressing the received image.  Once the client 

receives the GPC the frame rate exceeds 60 fps. 

We have compared the GPC to the conventional approach of sending individual 

visualization frames.  We tested several compression modes: non-lossy LZW 

and JPEG with 3 quality factors.  The results are summarized in Table 5.2. 
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Figure 5.13.  General pinhole camera frame compared to JPEG frame.  Frame 

resampled from GPC (left) and frame compressed with JPEG with a quality factor 

of 10% (right). 

5.3.1.4. Discussion 

Compared to a single conventional PPC image, a GPC image takes longer to 

render because of the non-linear projection operation.  However, using fast feed-

forward rendering, the GPC rendering time is negligible compared to network 

transfer times.  Moreover in typical remote visualization scenarios rendering 

capabilities are distributed asymmetrically between the server and the client, in 

favor of the server, and the GPC is rendered on the server.  A GPC image takes 

up more space than a single PPC image because it is larger and because it also 

stores depth per pixel.  Assuming that the GPC image is twice as big as the PPC 

image in each direction and charging 32 bits per depth sample, a GPC image is 

typically 8 times larger than a conventional PPC image.  Even so, bandwidth 

savings are considerable since hundreds or even thousands of output frames are 

computed from a single GPC image.  In our example, 2 GPC images were used 

to create 1,800 frames. 
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Table 5.2.  Average per frame communication performance for conventional 

remote visualization at various compression settings. 

 
LZW 

JPEG 

 10% 50% 90% 

Data (MB) 2.15 0.0338 0.0804 0.184 

Time (s) 1.54 0.70 0.74 0.93 

 

Rendering quality GPC images requires antialiasing, which is not more 

complicated than in the case of conventional images.  Like for conventional 

antialiasing, multiple samples are computed per pixel and the samples are 

blended to produce the final image.  The feed-forward algorithms described 

readily produce antialiased GPC images.  If the GPC image is rendered by ray 

tracing, antialiasing proceeds as usual, with the exception that the additional rays 

per pixel are defined using the GPC model and not the PPC model, a negligible 

cost compared to actually tracing the additional rays. 

Like in any image-based rendering method, the GPC approach implies an 

additional resampling step, which reduces the quality of the output image.  The 

quality loss can be reduced by not antialiasing the GPC image, which allows 

reconstructing the output frame from point samples.  On a GPU the resampling 

step is essentially free from the performance standpoint (i.e. in our experiments 

resampling took less than 2ms).  Even when no hardware support is present, 

resampling can be executed on the CPU at interactive rates (e.g. 13 Hz in our 

case).  We will test our system on additional client platforms in the future.  For 

platforms such as cell phones the lower compute power is compensated by a 

lower screen resolution, so software resampling at interactive rates probably 

remains tractable.  Moreover, the main concern for such platforms is the low 

connectivity bandwidth (e.g. 3G), which makes the GPC approach even more 

appealing. 
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GPCs support blurriness-free zoom up to a user chosen factor.  Higher zoom 

factors come at the cost of a lower resolution at the periphery of zoomed out 

frames (Figure 5.14).  The examples shown here were constructed under the 

assumption that the most likely zoom center is the center of the image.  This 

assumption is supported by the fact that in interactive visualization the view 

typically changes smoothly.  The view is a function V(f, tx, ty, tz, φ, θ, ρ) where f is 

the focal length, tx, ty, and tz are the translation parameters, φ, θ, and ρ are the 

rotation parameters, and the frame resolution is assumed to be constant.  

Smooth navigation implies that these parameters change continuously thus 

views following a reference view will have similar view directions, and thus 

zooming occurs close to the center of the reference view.  The GPC image 

anticipates small variations of each of the 7 view parameters: the depth channel 

allows warping the samples to nearby viewpoints, a larger field-of-view allows 

panning, tilting and zooming out, and a higher resolution at the center allows 

zooming in.  The GPC essentially covers a 7-D volume of views centered at the 

reference view.  The output frame reconstruction quality decreases towards the 

periphery of this view volume (i.e. increasing severity of disocclusion errors and 

increasing blurriness).  The GPC buys time to transfer a new reference image.  

Unlike conventional remote visualization, the GPC approach scales well with the 

frame rate at the client.  The higher the frame rate at the client, the higher the 

benefit of the GPC.  A high frame rate implies a dense sampling of the view 

volume covered by the GPC image, and more output frames are reconstructed 

from a single GPC image than in the case of a small frame rate. 

The overall size of the view volumes covered by a GPC and a PPC image is 

comparable, since the two images have the same number of samples.  However, 

the shape of the view volume covered by the GPC is better suited for remote 

visualization.  The reference view is not at the center of the PPC volume of 

views, but rather at its periphery: the PPC does not support zooming in or 

forward translation.  The GPC volume of views is more evenly distributed around 
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the reference view, at the cost of reducing the pan-tilt range, which is a desirable 

trade-off.  The GPC image is an image-based model that allows rendering 

multiple output images.  Like for all models, image-based or not, the utility of the 

model is not synonymous to the user rendering all possible images of the model.  

If the user never zooms in or never translates forward, the higher resolution at 

the center of the GPC remains unutilized.  However, zooming in and translation 

forward are likely operations in interactive visualization since they are the 

mechanisms that allow the user to increase the level-of-detail. 

Let’s compare the GPC approach to a simple approach of zooming in 

mipmapping fashion.  Initially the output frame is transferred from the server 

along with a PPC reference image that has the same view but twice the 

resolution (4 times the number of pixels).  The client reconstructs the output 

frame by trilinear interpolation between the two images.  Once the resolution of 

the reference PPC image is surpassed, a new image is requested from the 

server and so on.  If the output frame resolution is w x h, the approach transfers 

4wh pixels for each 2x zoom in sequence.  Now let’s consider a GPC reference 

image of w x h resolution with a central region of size w/2 x h/2 and a zoom 

factor of 2 (Figure 5.15).  The amount of data transferred is reduced 4 fold to wh, 

at the cost of a lower peripheral sampling rate.  Using Equation 5.1, we find that 

the minimum sampling rate for the first (F1) and the last (Fn) frame of the zoom in 

sequence is 0.4 and 0.9, respectively.  The sampling rate requirement (e.g. 1.0 

for F1 and 2.0 for Fn) is met at the center of the frame throughout the zoom in 

sequence.  The GPC is a flexible camera model that allows trading off periphery 

sampling rate for zoom in support.  For example one could choose a sampling 

rate of 4.0 at the central region of the GPC image, which suffices for two 2x zoom 

in sequences, reducing the transfer cost 8 fold compared to the mipmapping 

approach.  Another application might choose to enforce a minimum sampling rate 

of 1.0 for F1 by increasing the resolution of the GPC image to 1.6w x 1.6h.  In this 

case the data reduction factor is 4.0/2.56, without any decrease of sampling rate 
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at the periphery.  This is of course possible since the mipmapping approach uses 

a 2.0 sampling rate at the periphery which is never used. 

 

Figure 5.14.  Illustration of the decrease in resolution from center to periphery of 

a frame resampled from general pinhole camera image. 

If regions of interest are known for a dataset, the GPC should be built to allocate 

more samples to those regions, similar to the GPC images constructed for the 

focus-plus-context application.  Many datasets have intrinsic regions of interest.  

For example, in a computational molecular dynamics simulation where the goal is 

to investigate the therapeutic potential of a designed molecule (ligand), the 

visualization is likely to focus on the biomolecule receptor sites which reveal the 

quality of the fit between the ligand and the biomolecule.  These receptor sites 

are known a priori and can be marked as regions of interest.  In a computational 

fluid dynamics application an algorithm for extracting features (e.g. separation 

surfaces, vortices) produces geometry of variable complexity, and regions with 

high complexity are likely to be examined by the user at a higher resolution.  

These regions should be marked as regions of interest anticipating the need for 

additional samples.  Similarly a CAD model of a complex system can have 

known regions of interest such as complex components, components that are 

known to fail, or components that are likely to have failed based on diagnostic 

tests performed by a technician in the field. 
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Figure 5.15.  General pinhole camera sampling rate visualization.  The black 

rectangles show the samples used by the first and last visualization frame in a 2x 

zoom in sequence. 

A current limitation of our GPC-based remote visualization system is the 

relatively long GPC transfer times.  Several strategies can be employed to 

reduce this time including progressive refinement of color and depth, not 

transmitting depth at all and supporting translation by texture mapping the frame 

onto a quadrilateral, compressing color with various quality factors, or simply 

letting the user navigate through the current GPC while the next GPC is being 

transferred. 

5.3.2. Focus-Plus-Context Visualization 

5.3.2.1. Rendering Performance 

For focus-plus-context GPCs, the cubic equation per distorted vertex is an 

important performance factor.  GPC rendering performance increases for Figure 

5.2 from 7 Hz to 10 Hz or 11 Hz if the cubic distortion is replaced with a quadratic 

or linear distortion. 
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5.3.2.2. Discussion 

The GPC provides a focus-plus-context technique with the important advantages 

of simplicity, versatility, interactive rendering performance, and sampling rate 

continuity between focus and context regions.  The interactive rendering 

performance not only supports dynamic scenes, but it also allows the user to 

modify the focus region parameters at interactive rates.  If the focus regions are 

known a priori, or once the focus regions are found, the user can lock them and 

continue interactive exploration.  A unique strength of our method is the robust 

and efficient handling of surface geometry data. 

5.3.3. Extreme Antialiasing 

5.3.3.1. Rendering Performance 

The image in Figure 5.11 is rendered at 21.2 Hz.  Increasing the number of 

particles in each cluster from 104 to 105 and then to 106 (>4 million triangles), the 

frame rate becomes 14.5 Hz and 3.76 Hz, respectively.  The bulk of the time is 

spent rendering the GPC image—the kernel-based reconstruction takes 

negligible time. 

5.3.3.2. Quality 

Figure 5.16 shows GPC XAA at work in 3 visualization frames.  The camera 

translates forward so the tree has a larger and larger footprint.  The size of the 

off-screen tile is 640x720 for all three frames, which is sufficient to render the 

tree well with a single color sample per pixel.  The supersampling factor is 

chosen as to maximize the utilization of the off-screen tile, and it decreases as 

the tree footprint grows bigger.  The size of the tree in the off-screen tile remains 

approximately the same.  The biggest change in size is recorded when the 
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supersampling factor changes from one discrete level to the next (e.g. from 144 

to 121).  The correct reconstruction prevents transmitting the abrupt change to 

the output image, where the cluster regions are smooth, have accurate borders, 

and exhibit good frame to frame stability.  On the other hand 16x hardware 

antialiasing alone does not render the correct foliage volume, even when the 

camera is closest to the tree. 

   

  

 

Figure 5.16.  Extreme antialiasing compared to hardware antialiasing.  Off-screen 

framebuffer tiles (top) and (bottom) comparison between GPC XAA + MSAA 16x 

(left) and MSAA 16x alone (right).  The XAA factors are 361x, 144x, and 25x. 

5.3.3.3. Discussion 

The GPC allows for a flexible management of framebuffer resources enabling 

local supersampling factors that are out of reach for full-frame antialiasing.  

Complex datasets are visualized directly, bypassing problematic offline 

simplification.  GPC XAA works under the assumption that extreme geometric 

complexity is concentrated in a few screen regions.  For example, a city scene 

with a few complex trees or a flow dataset with a few complex turbulences should 

be rendered using GPC XAA whereas for a forest conventional LoD approaches 

are still needed.  In general any dataset with great complexity variation is suitable 

for GPC XAA whereas datasets with uniform complexity, low or high, are not. 
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A current limitation of the GPC XAA algorithm is that the supersampled regions 

have to be disjoint.  In the current implementation overlapping regions have to be 

merged into a single region with a single supersampling factor, which can lead to 

aliasing when the original regions required widely different supersampling 

factors.  This can probably be addressed with an improved reconstruction 

algorithm that takes into account the depth channel of the off-screen tile to depth-

composite the tile into the output image.  Another limitation is that the off-screen 

tiles are uniformly sampled which considerably weakens the antialiasing 

capability of the algorithm for thin nearly horizontal or nearly vertical features.  In 

such cases a large number of samples can change sidedness from a frame to 

the next causing temporal aliasing.  The solution to this problem is well known 

and we foresee that the algorithm can be adapted to use jittered sampling 

locations in the off-screen tile. 
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CHAPTER 6.  RASERIZATION FOR NON-LINEAR PROJECTION 

All of the camera models discussed have been designed to overcome occlusions 

or to non-uniformly sample 3-D scenes.  The great advantage from a 

computational standpoint of the planar pinhole camera model is that it is 

constructed and rendered from a set of linear equations efficiently on graphics 

hardware.  The problem of rendering cameras with non-linear projection at 

interactive rates is a broad and sometimes challenging one, but all camera 

models that have been introduced were designed specifically to address 

occlusion or non-uniform sampling while rendering interactively.   

   

Figure 6.1.  Example single pole occlusion camera image of a box.  The straight 

lines of the box (left) are no longer straight in the SPOC image (middle) which 

can lead to cracks when rendering (right). 

The great challenge in rasterizing when using cameras with non-linear projection 

is that straight lines in 3-D space do not necessarily project to straight lines on 

the image plane anymore (Figure 6.1).  This implies that the edges of a polygonal 

primitive (i.e. triangle) are not necessarily line segments after projection, and that 

the bounding box of the projected triangle is not necessarily the bounding box of 
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its projected vertices anymore.  If not properly accounted for, this can lead to 

cracks when rendering (Figure 6.1).  Moreover, the color and depth parameters 

of interior pixels of polygonal primitives can no longer be calculated as linear 

systems.  

No single solution exists for rendering camera models with non-linear projection, 

but the solutions tend to break down into a few available techniques.   

6.1. Rendering Techniques 

6.1.1. Raycasting 

Raycasting is the process by which an image is broken down into a set of 

camera rays or ray segments and each individual camera ray is intersected with 

the 3-D scene.  This level of generalization makes raycasting an option for any 

camera model composed of straight ray segments.  The rays of all three 

occlusion cameras, the graph camera, and the general pinhole camera are 

piecewise linear segments.  The rays of the cameras can easily be distilled into 

individual segments and later be recombined making raycasting a viable solution 

for rendering images.  By subdividing curved segments into small piecewise 

linear segments, the curved ray camera can also be rendered using raycasting. 

Raycasting is less well suited for interactive rendering than other approaches.  In 

its naïve implementation, every ray must be tested for intersection with every 

piece of geometry within a 3-D scene.  More advanced implementations which 

use spatial hierarchies to improve performance, still end up performing large 

numbers of intersection tests just to find the closest triangle that intersects with 

the ray.  These large numbers of intersection tests preclude interactive rendering 

in scenes of non-trivial complexity.  Instead a solution must be chosen which 

takes advantage of the efficiency of the feed-forward graphics pipeline. 



 

 

211

6.1.2. Point-Based Rendering 

A straight forward way of rendering images of 3-D scenes is to simply ignore the 

connectivity data attached to the scene and render the scene as a set of points.  

Alternatively, the scene triangles could be rendered using a conventional planar 

pinhole camera and then have all the samples distorted to the final output image 

plane locations.  These types of sample-based approaches often suffer from 

‘holes’ in the output image locations where too few samples project.  Both of 

these approaches need to address the problem of maintaining surface continuity 

to guarantee adequate output image coverage. 

This problem has been studied extensively in the world of image-based rendering 

[102, 119, 128, 139] where a number of possible solutions exist.  One possible 

solution is to use splatting, where point-based samples are replaced with 

overlapping surface elements.  Splatting can give good scene coverage without 

the need for any explicit connectivity.  Such techniques are not ideal as they are 

only a surface approximation and end up simply discarding the connectivity data 

that already enumerates the surface within the 3-D scene dataset. 

 

 

Figure 6.2.  Wireframe single pole occlusion camera image constructed with 

subdivision factors of 1, 3, and 5. 
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6.1.3. Triangle-Based Rendering 

An alternative method to point-based rendering which uses 3-D scene 

connectivity data is triangle subdivision.  In this approach the triangles of the 

scene are subdivided to a fine-grain level, projected using the relevant camera 

model, and rasterized using the conventional feed-forward graphics pipeline.   

The general algorithm used with this method is: 

1. Project the vertices of the triangle t 

a. If the length of an edge is great than epsilon 

• Subdivide triangle t into triangles t0’…tn’ 

b. Else 

• Pass through triangle t 

The algorithm takes a triangle as input.  It projects the vertices of the triangle and 

subdivides the triangle based upon the projected edge lengths.  The algorithm 

can be run for a fixed number of iterations or until the maximum edge length is 

below some epsilon.  Figure 6.2 shows an example SPOC with various 

subdivision levels.  The smaller the output triangles, the more accurate the 

SPOC rendering becomes. 

This method has the advantage of addressing the limitations of the previous two 

methods.  Like raycasting, this method uses the connectivity data to produce a 

crack-free output image.  Like point-based rendering, this approach fits into the 

standard feed-forward graphics pipeline.  These two reasons make this approach 

the best compromise between speed and quality. 

However, this method does come with its own shortcomings.  This approach is in 

reality an approximation to point-based rendering.  In order to produce an output 

image that accurately represents the scene, the triangles of the scene need to be 
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subdivided to a very fine level, about 1 output pixel in size.  Otherwise, the 

triangle pixels may rasterize to incorrect image plane locations.   

The fine grain subdivision needed leads to a few problems.  The subdivision of 

the scene is for the most part view dependent.  If the subdivision is pre-

computed, the maximum level of potential subdivision must be selected, resulting 

in large quantities of data.  Modern graphics cards now have primitive level 

programmability which enables in-stream triangle subdivision.  Using this 

capability has severe performance implications, which should be overcome by 

the introduction of primitive level tessellation in future architectures.  The other 

problem with this approach is that the increased number of triangles requires 

many more projection operations be performed than are normally required to 

render a planar pinhole camera image.    

 

Figure 6.3.  Illustration of incorrect bounding box.  The incorrect bounding box of 

curved projected triangle (left) leads to cracks between adjacent projected 

triangles (right). 
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6.1.3.1. Hybrid Raycasting 

A final means of rendering with non-pinhole cameras is a hybrid approach which 

comes full circle back to raycasting.  While traditional raycasting tests whether 

each ray intersects with each triangle, hybrid raycasting performs the same ray 

triangle intersection test per triangle on a smaller, yet conservative set of rays 

(only those who could potentially intersect the triangle).  One of the more 

powerful aspects of this approach is that it runs one triangle at a time, fitting into 

the feed-forward graphics pipeline.  The resulting images have the same quality 

and correctness of standard raycasting, but the performance begins to approach 

that of the triangle and point-based feed-forward techniques. 

The basic algorithm for raycasting approach is as follows: 

For each triangle t in the scene 

1. Calculate a conservative screen space bounding box 

2. For every pixel within that bounding box 

a. Calculate the ray r that pixel represents 

b. Test for intersection between r and t 

• If they intersect 

o Compute barycentric coordinates of the 

intersection 

o Compute rasterization parameter values (i.e. color 

and depth) 

• Else discard sample 

Step 1 is responsible for calculating a compact but conservative region in which a 

ray could potentially intersect the current triangle.  If this calculation is too 

aggressive, rays might never be tested against triangles they intersect.  If the 

region is overly conservative, computation will be wasted on rays that have no 

chance of intersecting the triangle. 
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Step 2 tests each of the rays within the bounding box for intersection with the 

individual triangle.  Rays which do intersect the triangle have their parameters 

calculated and the equivalent color and depth buffer locations set.  Rays which 

do not intersect the triangles are simply discarded. 

This approach produces high quality results with a few limitations.  The efficiency 

and correctness of this method requires that a conservative footprint of all 

triangles can be calculated.  If the triangle footprint is too small, this can lead to 

holes in the output image (Figure 6.3 and Figure 6.4).  Alternatively, if the 

footprint is too large, computation can be wasted testing for ray-triangle 

intersections that will never occur.   

   

Figure 6.4.  A single pole occlusion camera image computed with hybrid 

raycasting.  The triangles of the left and middle images are not properly enlarged 

leading holes to appear in the output image.  The right image highlights the 

triangle footprint required for images with no holes. 
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CHAPTER 7.  VISUAL PERCEPTION OF NON-PLANAR PINHOLE CAMERA 
STIMULI  

As computational power increases, the size and complexity of datasets increase 

in stride.  These datasets invariably have complex composition of structures 

leading to occlusions when some data subsets hide other important data 

subsets.  These occlusions limit how much is visible from any single viewpoint.  

This, for example, increases the complexity for a user to find subsets of interest 

within larger datasets.  It also limits the ability of a user to simultaneous examine 

discrete regions. 

The most common approach to overcoming occlusion is to simply use navigation.  

Here, the user is expected to move the camera around a complex dataset in 

order to identify any data of interest.  One challenge of navigation is developing 

intuitive user interfaces.  Most desktop applications navigate by using the 

keyboard and mouse—an interface which does not map well to natural forms of 

human navigation, such as walking.  Another challenge is that almost all 

navigation is performed using the planar pinhole camera (PPC).  The PPC 

requires direct line-of-sight to the objects it is sampling.  This means that any 

occlusions within a scene will force the user to manually navigate the PPC to a 

new location in order to view the space hidden by the occluder. 

An alternative to navigating a PPC for dataset exploration is to use a collection of 

multiple PPCs simultaneously.  Using multiple PPCs has the advantages of 

potentially being comprehensive and therefore requiring no navigation, but the 

approach also has significant restrictions.  Such visualizations produce a 

collection of views which are redundant and discontinuous.  When a user views 
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the visualization, sequential examination and mentally aligning and connecting 

the various views is required. 

In order to make a multiple PPC visualization comprehensive, a large number of 

PPCs might be required.  The number of PPCs needed for complex datasets will 

likely be impractical for display by any conventional means.  If the number of 

PPCs is reduced to a more modest level, portions of the dataset will be 

unsampled and an alternative means for viewing those regions is required.   

A number of visualization approaches also exist which enhance a single PPC 

view in order address the problem of occlusion.  Transparency attempts to solve 

the problem of occlusion by making outer occluding layers less opaque, thus 

exposing inner layers, but these approaches are limited to simple occlusions with 

very few layers.  Cutaway addresses some of the transparency limitations by 

simply removing outer occluding layers.  Unfortunately in the process, important 

data can be discarded as well.  Space distortions try to rearrange data subsets 

such that they are all visible from a single point of view.  These approaches often 

require a scene hierarchy and distort the spatial relationships between 

neighboring objects. 

Using multiperspective images (MPIs) for scene exploration presents an 

intriguing and promising alternative to the existing approaches.  The graph 

camera is an MPI framework which enhances a PPC with multiple perspectives 

by applying bending, splitting, and merging operations to a PPC frustum.  The 

flexibility of the graph camera allows for MPIs which span a continuum of 

exploration methods.  They span cameras which are simply PPCs enhanced with 

views around corners all the way to seamless and non-redundant comprehensive 

views of 3-D scenes.  The flexibility of MPIs allows designing exploration 

techniques that can specifically cater to the needs of an individual application. 
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comprehensive set of PPCs.  For the orientation task, users performed virtually 

identically with an accuracy of 66.7% and 69.8% for the PPC and GC, 

respectively. 
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Figure 7.2.  A comparison of comprehensive visualization methods.  Left: A 

comprehensive matrix of PPCs (top) and GC (bottom) capture the same scene 

containing 7 objects.  Right: The layout of the associated cameras. 

7.1. Prior Work 

To the best of our knowledge, this is the first user study on the benefits of using 

MPIs to explore 3-D scenes.  One significant reason for that is most MPI 

techniques are not amenable to navigation.  The most relevant prior work is in 

multiperspective imagery (Section 2.2), model modification and dataset distortion 

(Section 2.3) and navigation. 
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7.1.1. Navigation 

Free-form, 6 degree-of-freedom 3-D navigation is difficult for users to master.  

Constraining navigation [11, 40, 52, 60] is the approach most frequently used to 

improve the user’s navigation experience.  This also includes keeping a safe 

distance from objects for the purpose of having the camera at a natural height for 

architectural navigation [148], providing safe navigation [46] which avoids walls 

and other distractions, or simply hovering [71] at a constant distance for object 

inspection.  Simplified point-and-click controls [58, 74] or gesture-based controls 

[104, 121, 143, 175] are also effective at improving the user’s navigation 

experience. 

The speed of camera navigation is another concern for user comfort.  A number 

of systems [96, 101, 155, 162] have addressed the problem of navigation in 

scenes of multiple scales.  Here, fast and smooth transitions between 

environments ranging from the size of the earth down to a single room or even to 

a microscopic level are desired. 

Identifying a path, or wayfinding, through unfamiliar 3-D space is a task which 

can be challenging for users.  By employing tools, such as maps and signs, 

wayfinding through 3-D virtual environments is made easier [27].  By providing 

additional context, like using proxies and tethers to link maps with ground level 

views, subject navigation performance can be further improved [123].  Visit Wear 

[146] addresses the lesser wayfinding problem of revisitation (following a path 

already visited) by adding a history mechanism to fisheye views using a 

distortion-based technique.  It improves performance by changing the task from 

one of remembering to one of visual search.  It does not provide the previewing 

capability of the GC making it ineffective in tasks like searching and counting. 

Work flow visualization tools begin to provide a multiview interface for 3-D 

dataset exploration.  Some systems [76] provide mechanisms to review 
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navigation and visualization tasks in a serialized pattern (undo and redo 

mechanisms).  Other systems [13] allow branching of parallel tasks allowing 

multiple views simultaneously. 

There are a wide variety of full multiview systems [68, 135] and spreadsheet-like 

interfaces [67, 83] which exist.  These techniques allow varying the visualization 

viewpoint or fixing the viewpoint and varying visualization parameters.  Like 

traditional spreadsheets, the multiview spreadsheets are tabular allowing them to 

be treated like flipbooks, but they can also be moved, rotated, or scaled.  These 

interfaces can provide a wide variety of views simultaneously, but lack the user 

interfaces for good interactive exploration of datasets. 

7.2. The Graph Camera 

The Graph Camera (GC) is a multiperspective framework designed around 

interactive rendering and a continuum of navigation modes.  The navigation 

supported ranges from PPCs enhanced with additional perspectives, all the way 

to fixed position comprehensive images.  This wide variety of navigation modes 

has led us to use the GC in this study.   

The construction of a GC begins with a regular PPC frustum.  That PPC frustum 

then undergoes 1 of 3 operations.  A bend operation takes one PPC and bends 

the frustum producing one child PPC.  The split operation takes one PPC 

frustum, splits it into two separate pieces producing two child frusta.  The 

merging operation takes two PPCs and combines them to produce a single child 

frustum.  Each child frustum is itself a PPC allowing the operations of the GC to 

be further applied to those frusta recursively.  The result is a graph of PPC frusta. 

The GC calculates a closed-form projection for each of the sub-frusta allowing for 

interactive rendering using the feed-forward graphics pipeline.  The images of the 

GC are non-redundant and C0 continuous across the changing perspectives. 
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Figure 7.3.  Planar pinhole camera and portal-based multiperspective image 

comparison.  The PPC (top) only follows the magenta path.  The portal-based 

GC (bottom) follows the magenta path plus the blue paths down the adjacent 

corridors. 

In order to build an individual GC, an application specific construction function 

needs to be developed.  This function will determine all of the parameters of the 

camera model (similar to setting the focal length and view direction of a PPC).  

Two construction methods are used in this study. 

The first method to build the GC is a portal-based constructor.  Given a PPC, the 

constructor automatically identifies portals (perpendicular hallways in our case) 

and performs a GC bend operation down those portals (Figure 7.3).  The view 

direction of the bend is straight down the hallway.  In order to facilitate a smooth 

transition between hallways, the portals are collapsed into the root PPC as the 

user approaches them. 
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The other construction method used is a comprehensive GC that captures the 

entire scene into a single image (Figure 7.2).  The construction is a recursive 

method which begins from a pre-selected location and searches the scene in 

depth first order.  At straight corridors, the GC does nothing.  At turns, the GC 

simply bends around the corner.  At 3-way intersections, the GC splits 2-ways in 

the outgoing directions.  For 4-way intersections, the GC splits 3-ways for the 

outgoing directions.  The algorithm could be generalized to n-way splits, but we 

chose to limit the scene to a simple grid-based layout.  If the GC reaches a 

region which has already been visited, the search along that branch terminates.  

The resulting GC is a tree which provides a non-redundant view of the entire 

space. 

7.3. Experiments 

We have tested subjects’ performance in three tasks to better understand what 

tasks in general might benefit from MPIs. 

7.3.1. Finding Objects 

The first task users performed was to navigate the 3-D scene in order to find an 

object (Figure 7.4, left).  Using the mouse and keyboard, the subject was given 3 

degrees-of-freedom (forward/backward, left/right, and pan) for navigation.  The 

subject was asked to, as quickly as possible, move throughout the scene in order 

to locate and click on the object.  Subjects were limited to 60 seconds of search 

time.  In this experiment the subjects’ performance was compared for a single 

PPC to that of the portal-based GC (Figure 7.1).  The subjects were tested 

against both stationary and moving objects. 
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7.3.2. Object Counting 

The next task subjects were asked to perform involved counting the number of 

objects visible within a scene.  Here a comparison was performed between a 

comprehensive GC and a matrix of PPCs (Figure 7.2).  The PPCs were hand 

chosen to completely cover the scene with as little redundancy as possible.  The 

subjects were shown the scene which contained between 4 and 7 objects.  The 

subjects were given 5, 10, or 20 seconds to count the number of objects before 

they were hidden.  The objects could have either duplicate or unique colors.  As 

with the previous experiment, subjects were tested against both stationary and 

moving objects. 
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Figure 7.4.  Sample object and object locations used for our user study.  The 3-D 

scene (right) used for object (left) finding.  The users’ starting location is marked 

with an orange S and the object locations are identified by the blue circles. 
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7.3.3. Path Matching 

The final task we asked subjects to perform was a passive test of spatial 

orientation.  The subjects were asked to watch a video playback of a randomly 

selected path.  The subjects were then shown diagrams of 3 paths (1 correct 

path and 2 randomly generated incorrect ones) and asked to match the path they 

just watched play back.  This test was performed comparing a single PPC to the 

portal-based GC. 

7.4. Results and Discussion 

All of our experiments were performed on computers with minimum 

configurations of Intel Xeon 2.4 GHz, 4 GB RAM, and nVidia GeForce 280 GTX 

graphics cards.  All experiments used Dell 24” monitors with 1,920x1,200 

resolution.  The PPC and GC are both capable of rendering at hundreds of 

frames per second, but we enabled vertical sync for a refresh rate of 60 Hz. 

7.4.1. Subject Pool 

We had a total of 47 subjects participate in at least one battery of tests.  Subjects 

were recruited from our research lab and from computer science and computer 

technology courses.  The ages of the subject pool ranged from 18 to 38 years old 

and consisted of 37 males and 10 females.  The subjects self-reported their level 

of 3-D navigation experience ranging from none to very high, though the majority, 

33, reported their level as high or very high.  Subjects were asked to participate 

in 1 to 3 sessions.  Of the 47 subjects, 25 subjects chose to participate in a total 

of 3 testing sessions. 

Of the 47 total subjects, single session results are reported for only 45 subjects.  

One subject’s results were excluded because they became motion sick about 10 
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minutes into the experiment.  Another subject was excluded because they 

suffered from an unspecified visual impairment (color-blindness, cataracts, etc).   

Subjects were not financially compensated for their time.  Students recruited from 

courses were offered extra credit.  All testing was performed in accordance with 

the policies of our Institutional Review Board. 

7.4.2. Finding Objects 

The first series of tests consisted of finding stationary objects within a 3-D maze.  

For each test, an object was placed at one of 12 locations (Figure 7.4) within the 

maze.  The subjects had objects placed at each of the locations one time in a 

preselected order.  The view mode alternated between the PPC and GC for a 

total of 24 tests.   

For all tests, there were exactly 33 (6.35%) cases of time expiring for both the 

PPC and GC.  These outliers were removed from the results in the top of Figure 

7.5.  As the numbers indicate, using the GC, subjects outperformed the PPC for 

almost all cases.  Performance improved by as much as 90.7% for case #3.  On 

average, the subjects found objects in 20.4 seconds with the PPC and 13.3 

seconds with the MPI, an improvement of 34.8%. 

Case #3 was the case in which using the GC most outperformed using the PPC.  

This was a particularly easy case for the GC.  The extra perspective of the portal-

based GC made the object visible from the initial viewpoint and view direction.  

This required the subjects perform almost no navigation.  For the PPC case 

however, the subjects needed to translate forward slightly and look right to 

uncover the object. 

Case #8 was the only case which showed the PPC outperforming the GC.  The 

GC can sometimes introduce new occlusions into a scene which were not 
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originally there.  As shown in Figure 7.6, the change of perspective in the GC in 

case #8 introduces a new occlusion which delays the subject finding the object. 

A second series of tests used the same 3-D maze and the first 8 object locations 

from Figure 7.4.  Here the object location only served as a starting point for 

moving objects.  As time progressed, the object would translate around the map 

in random directions.  Like previously, the view mode alternated between the 

PPC and GC resulting in a total of 16 tests. 

 

 

Figure 7.5.  User performance in finding objects.  User performance finding 

stationary objects (top) and dynamic objects (bottom) compares the PPC to the 

GC for each object. 

For moving objects, the PPC had a total of 7 (1.90%) outliers (time expired) while 

the GC only had 1 outlier (0.27%).  The bottom of Figure 7.5 compares the 
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results.  For the first 3 cases, the PPC and GC performed virtually identically.  

For the remaining cases the GC once again outperforms the PPC.  For all cases, 

the subjects found the object in an average of 12.6 seconds with the PPC and 

9.11 seconds with the GC for a speedup of 27.8%. 

  

Figure 7.6.  Example of a multiperspective image inducing new occlusions.  The 

GC (left) has introduced new occlusions not visible with the PPC (right) delaying 

the subject finding the object. 

Subjects were tested for multiple sessions to identify whether or not learning 

played a factor in their ability to use the GC.  The average time to find objects is 

recorded in Table 7.1.  For stationary objects, subjects’ performance improved 

consistently for both the GC and PPC.  The GC consistently outperformed the 

PPC on average 34.8%, 30.6%, and 35.4% for sessions 1, 2, and 3, respectively.  

For the moving objects, the PPC performance improved substantially with every 

session.  The GC performance however did not, implying that subjects’ 

performance was near the peak from the outset. 

In virtually all cases, the subjects’ performance with the GC was at least as good 

as or better than the PPC.  This should not come as a surprise since the GC is a 

PPC enhanced with additional viewpoints.  The additional viewpoints assist the 

subject in two valuable ways.  First, the preview of upcoming regions reduces the 

navigation required for an exhaustive search by eliminating empty dead-end 

hallways more quickly.  With a PPC, the subject would need to navigate all the 
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way up to the hallway to check for a dead-end.  With the MPI, the subject simply 

previewed the hallway and eliminated it without needing to approach it.  The 

second benefit of the additional viewpoints is that the user will see the object 

earlier.  With the PPC the subject navigates all the way to the hallway of interest 

to look for an object.  When using the GC, the subject can simply look one 

intersection ahead to the upcoming hallway and click on the object without the 

need for any additional navigation. 

Table 7.1.  Average time to find objects for subjects participating in three testing 

sessions. 

 Stationary Objects Moving Objects 

 PPC GC PPC GC 

Session #1 19.7 s 12.9 s 11.6 s 8.6 s 

Session #2 15.7 s 10.9 s 10.8 s 8.5 s 

Session #3 14.3 s 9.2 s 9.0 s 8.2 s 

7.4.3. Object Counting 

The next series tested subjects’ ability to count objects.  For these tests subjects 

were shown between 4 and 7 objects for various lengths of time and asked to 

select the correct number that they counted in the scene.  The testing alternated 

between a comprehensive matrix of PPCs and a comprehensive GC for a total of 

20 tests for stationary objects and 20 for moving objects.  For stationary objects, 

subjects selected the correct number of objects 90.2% of the time with the GC 

and only 43.6% with the PPC.  For moving objects, the results showed an 

accuracy of 92.4% for the GC and only 40.4% for the matrix of PPCs. 

The results for stationary objects were tested under a variety of conditions.  The 

first of which varied the amount of time subjects were shown objects (Table 7.2, 



 

 

230

left).  Not surprisingly, increasing the available time did increase accuracy for 

both the PPC and GC.  Though, the increase in performance for the GC was less 

pronounced between 5 and 20 seconds (6.1%) than that of the PPC (15.2%) due 

to the high level of starting accuracy for the GC.   

Table 7.2.  Accuracy counting stationary objects under various conditions.  

Results compare user performance for different times (left) and duplicate coloring 

conditions (right). 

 5 s. 10 s. 20 s. Dup. No Dup. 

PPC 41.3% 37.6% 56.5% 40.9% 45.5% 

GC 84.7% 93.0% 90.8% 84.9% 94.4% 

 

Another condition we tested for involved object coloring.  For some testing, at 

least 2 objects in the scene would have the same coloring.  Subjects were made 

aware of the potential for this situation, but were not informed when it was the 

case.  Table 7.2, right, shows the subject performance when duplicate coloring 

was introduced.  For both the PPC and GC, performance went when down with 

duplicates at a rate essentially proportional to the case without duplicates. 

Finally, we tested subjects in multiple sessions (Table 7.3).  Using the PPC, 

subjects’ performance went up at a good pace improving with each session.  For 

the GC, performance peaked during the second session.  Our interpretation of 

that result is that for the counting task in particular, the learning required to use 

the GC is less than the learning required for the PPC. 

Our results show that the GC significantly outperforms the PPC for the counting 

task.  We see 3 features of the GC which have the most significant contributions 

to this result.  The GC is completely non-redundant.  For the PPCs, the 

redundancy, although chosen to be minimal, still leads objects to be visible 

multiple times within the matrix of PPCs.  That can cause one object to be 
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incorrectly counted multiple times by subjects.  The GC is completely continuous 

making tracking objects very simple.  The lack of continuity between the views of 

the matrix of PPCs can make it difficult to track objects as they transition 

between various views.  Finally, the layout of the GC is very natural for counting.  

This reduces the cognitive effort required for the task by allowing the subject to 

simply read the image left to right counting along the way.  The layout of the 

matrix of PPCs is less natural requiring the subject to bounce their eyes from 

view to view in unnatural patterns.  These features simplify the counting task by 

transforming the task from one of visual search plus spatial alignment (for 

tracking and removing duplicate objects) to simply one of visual search. 

Table 7.3.  Accuracy counting objects for subjects participating in three testing 

sessions. 

 Stationary Objects Moving Objects 

 PPC GC PPC GC 

Session #1 38.8% 89.6% 39.6% 90.8% 

Session #2 50.4% 98.4% 46.0% 98.0% 

Session #3 58.4% 98.4% 47.6% 95.6% 

7.4.4. Path Matching 

Our path matching experiment was designed to test basic orientation 

understanding.  For each test, we generate a random path with 5 turns.  That 

path was then played back with either a PPC or portal-based GC.  Play back 

lasted between 20 and 40 seconds.  The process was repeated 10 times 

alternating between the PPC and GC.  The results showed that users selected 

the correct path at a rate of 66.7% for the PPC and 69.8% for the GC.   
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For subjects who participated in 3 sessions, their performance for the PPC was 

60.8%, 72.0%, and 78.4% for sessions 1, 2, and 3, respectively.  The 

performance for the GC was 64.0%, 73.6%, and 76.0% for sessions 1, 2, and 3. 

These results show that when it comes to the very basic understanding of 

orientation, the GC and PPC perform similarly.  The maze we used only had 90° 

turns throughout.  In the end, this only tested the subjects’ ability to determine 

whether they were going straight, turning left, or turning right.  As with all 

multiperspective techniques, spatial relationships are disturbed.  If we had asked 

the subjects more probing questions, such as guess the distance traveled or the 

exact angle of a particular turn (given non-90° turns), the performance of the GC 

would likely have been lower. 

7.4.5. Subject Survey 

At the conclusion of testing, subjects were surveyed for their opinion on whether 

the PPC or GC was easier to use for the tasks described.  They were asked to 

respond on a scale of 1 to 5, with the PPC marked as 1, the GC marked as 5, 

and 3 marked as about the same.  The results of the survey seem to align with 

the numbers collected.  For object finding, the average response was 4.5, 

making the GC the strongly preferred method.  For object counting, the average 

was 4.98 (1 subject selected 4, all others selected 5) making the GC the clear 

standout.  The results for the path matching were more balanced but slightly 

favoring the PPC at 2.7 probably indicating a higher comfort level with the 

familiar PPC images. 
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CHAPTER 8.  CONCLUSION 

8.1. Summary 

We have shown Camera Model Design to be a viable problem solving paradigm 

in a wide variety of applications.  By adhering to the principles of Camera Model 

Design, we can construct cameras which improve the sampling of 3-D scenes 

when compared to that of the planar pinhole camera.  Removing the planar 

pinhole camera constraints of convergent rays and uniform sampling allows us to 

capture samples not visible from a reference viewpoint in non-uniform patterns.  

Camera models can then be designed for a particular application and adapted to 

the data they are sampling allowing for the optimal construction to be used.  

Finally, cameras are carefully designed to have fast projection allowing for 

interactive rendering using the feed-forward graphics pipeline.  

The occlusion cameras work locally to improve sampling by bending rays around 

the silhouettes of objects.  They capture the samples needed to reconstruct a 

scene from a reference viewpoint and a cluster of nearby viewpoints.  All of the 

occlusion cameras have fast projection operations making them efficient to 

render.  Many occlusion camera applications were presented including using 

occlusion camera images as a geometry replacement for high-quality rendering 

effects and volumetric display acceleration, along with as a means of 

compression for a dense set of photographs.  These are just a small sampling of 

the applications which could benefit from using the occlusion cameras. 

The graph cameras allow for comprehensive views deep into heavily occluded 

scenes.  They do so by bending, splitting, and merging a planar pinhole camera 
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frustum.  The graph cameras have efficient projection functions for interactive 

rendering.  Some of the applications for the graph camera include enhanced 

surveillance, 3-D scene summarization, and enhanced dataset exploration. 

The general pinhole camera removes the planar pinhole camera constraint of 

uniform sampling of the image plane.  This allows the general pinhole camera to 

adapt the sampling to correspond with the complexity of the dataset being 

sampled.  The general pinhole camera was also designed with efficient projection 

function allowing it to be rendered quickly.  We demonstrated its application to 

remote visualization, focus-plus-context visualization, and extreme antialiasing, 

though versions of the camera model could be applied to any problem involving 

non-uniformly sampled datasets. 

We have also shown that some camera models can be designed to improve 

human perception.  In particular, we have shown that the graph camera can 

improve user performance in a number of tasks commonly performed on 3-D 

datasets.  These include searching and counting, which showed dramatic 

improvement over the planar pinhole camera. 

Given the evidence presented, I believe I have proven my thesis statement: 

In order to create images that better sample 3-D scenes, I propose 

abandoning the constraints of the conventional planar pinhole camera 

model by no longer requiring that rays be straight, converge, or sample 

space uniformly.  Camera models can then be designed for specific 

applications and optimized dynamically for each 3-D scene or dataset so 

as to achieve adequate sampling.  At the same time, camera models 

should also be designed to preserve image computation efficiency in order 

to support interactive rendering of dynamic scenes. 
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8.2. Camera Model Design in Graphics, Visualization, and Vision 

Many avenues of future work exist for Camera Model Design.  They span the 

fields of computer graphics, visualization, computer vision, and computer-human 

interaction. 

An intriguing direction of work for the occlusion cameras would be to extend the 

epipolar occlusion camera to higher dimensions.  The epipolar occlusion camera 

has extended the 1-D viewpoint to a 2-D viewsegment.  Further extension of the 

view to a 3-D view triangle or quadrilateral would allow for a single image to 

contain an entire lightfield.  The view could be further extended to a 4-D view 

tetrahedron effectively capturing all the data needed for 5-D plenoptic function 

into a single image.  Extending the camera even further to encode time varying 

data into that image would allow for a single image to contain the data for a 6-D 

plenoptic function. 

Further exploration of the graph camera’s application to navigation is important.  

This includes the need for new, more automatic constructors.  For example, a 

top-down constructor could begin from the current viewpoint and automatically 

detects regions which are unsampled.  The graph camera could then 

automatically bend, split, or merge the frustum in order to generate a 

comprehensive view of the scene.  An alternative bottom-up constructor could 

take as input a collection of desired views.  It would then need to automatically 

generate graph camera components which would combine those independent 

views into a single graph camera. 

Another broader avenue of future work for the graph camera involves its 

application to modeling and artwork.  To further develop such applications, new 

more intuitive graph camera constructors would need to be invented.  Then, 

collaborations with artists would be required to refine the constructors to their 

needs.   
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There are many applications in computer vision which depend upon integrating 

and displaying data from a cloud of sensors (i.e. a large set of cameras).  We 

have already shown the graph camera to be useful in integrating a few fixed 

position cameras into a single view.  Further extension of these techniques to 

integrating a higher number of cameras with non-fixed positions has potential 

application in both surveillance and situational awareness applications. 

The current implementation of the general pinhole camera only supports one or a 

few discrete simply shaped regions of variable sampling.  Extending the camera 

model to support more generalized non-uniform sampling would allow for 

applications in many areas.  For example, shadow mapping could benefit from 

such an approach with higher sampling rates at object silhouettes.  This type of 

constructor could also be used to compress height maps for remote visualization.  

Regions with high variation in height could receive a greater number of samples 

than other regions.  This approach could be extended to higher-dimensional 

datasets as well.  For example, large 3-D volumetric data could be compressed 

in a similar method to improve volume rendering performance.  

There are also domain specific challenges for Camera Model Design.  Almost 

certainly, a camera model designed for use on one type of domain specific data 

will not be optimal for data from other domains.  For example, a camera model 

designed for searching through a microbiologist’s dataset will not have any use to 

a civil engineer searching within a finite element dataset.  Instead, a new camera 

model should be designed or an existing camera model modified for each 

domain specific application. 

8.3. Camera Model Design and Perception 

We have shown that Camera Model Design can be used to improve user 

performance on a few generic tasks.  A more detailed understanding of the 
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influence of perception on Camera Model Design remains one of the most open 

of the problems we have addressed.   

The quantity and effects of the distortion introduced in multiperspective images 

remains a significant unknown.  Within the context of the graph camera, simply 

testing the ability of a user to estimate the angle between 2 crossing non-

perpendicular hallways might prove quite interesting.  For tasks where good 

spatial understanding is required, multiperspective images might never be an 

acceptable solution.  There are however many tasks, like searching and 

counting, which do not require good spatial understanding in all contexts. 

A final path of future work with Camera Model Design involves perceptually 

driven camera models.  Much the way a magician uses slight-of-hand to cause 

the audience to see only what he intends for them to see, we can use Camera 

Model Design in the same way.  Camera models can be designed to change the 

user’s understanding of the space or automatically focus the user’s attention on 

key pieces of data. 
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Appendix A.  
 

We derive the mapping Qk+1 of a point on the image plane of planar pinhole 

camera k+1 (PPCk+1) to PPC0 by first establishing the mapping Rk+1 between 

PPCk+1 and PPCk as shown in Figure A.1.  Then we show by induction that  

Qk+1 = R1R2…Rk+1. The base case is verified as follows: 

�b4l41 � M4 = =a �bala1 � , �bala1 � Ma = =̀ �b`l1̀ � 

�b4l41 � M4 = Qa 1Ma Q` �b`l1̀ � = 1Ma QaQ` �b`l1̀ � 

�b4l41 � M4Ma = QaQ` �b`l1̀ � 
m` = QaQ` 

Equation A.1

By the induction hypothesis: 

mn = QaQ` … Qn 

�b4l41 � M4 = QaQ` … Qn �bnln1 � Equation A.2

Using the equations in Figure A.1 we obtain: 

�bnln1 � Mn = Qnpa �bnpalnpa1 � Equation A.3
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Combining equations A.2 and A.3 terminates the proof: 

�b4l41 � M4 = QaQ` … Qn 1Mn Qnpa �bnpalnpa1 � 

�b4l41 � M4Mn = QaQ` … QnQnpa �bnpalnpa1 � Equation A.4

 

qnpa = r�npa �npa �'npa + Ynpas �bnpalnpa1 � 
qnpa = 'n +  r�n �n Yns �bnln1 � Mn 

Qnpa = r�n �n Ynstar�npa �npa �'npa − 'n + Ynpa�s 
�bnln1 � Mn = Qnpa �bnpalnpa1 � 

Figure A.1.  Derivation of mapping PPCk+1 and PPCk with centers of projection 

Ck+1 and Ck. Vectors x and y give the row and column direction and are one pixel 

in width and one pixel in length, respectively.  Vector o points from the COP to 

the top left corner of the image.  Point Pk+1 on the image plane of PPCk+1 is 

mapped to point Pk on the image plane of PPCk through matrix Rk+1. 
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Appendix B.  
 

We first show that the modified arcs are conic sections that connect the 

component rays from the transitioned PPCs with C1 continuity.  Consider Figure 

B.1 that shows the modified rays of the CRC model in a single epipolar plane 

through C0 and C1.  Tn, Sn, and Qn are the control points of the Bézier arc b that 

aids with the projection of all points in the epipolar plane. Triangles TnSnQn and 

TkSkQk satisfy Desargues’ Theorem [90].  Since the intersections of planes t0, t1, 

and t2 with the epipolar plane are concurrent, all such triangles are perspective, 

as are triangles PnSnQn and PkSkQk.  Here, A is the center and line C0C1 is the 

axis of perspectivity.  By construction, lines QkPk intersect on the axis of 

perspectivity in a common point Rk and therefore points Pk are also perspective. 

Now the Bézier curve b is the projected intersection of a quadratic cone in 3-D, 

with vertex A, and a plane through a line that projects onto the axis of 

perspectivity.  Since triangles TkSkPk are perspective, the other transition curves 

are also conic sections.  Again in 3-D, the plane containing lines ATn and ASn is 

tangent to the cone, in a line projecting onto line ATn and so the conic arcs are all 

C1 continuous with the lines through C0.  Likewise, lines through C1 are C1 

continuous with the conic arcs on the other end. 

Having established that the transition curves are tangent continuous and are 

conics, we now establish that different transition arcs cannot intersect in the 

transition region. 

Let PkSkQk and PjSjQj be two triangles defining the intersecting transition curves.  

Since the control points PkPj and QkQj are distinct, the intersection must be in the 

interior of the arcs, say at X.  The lines QkX and QjX are distinct and intersect in 

X.  Thus they do not intersect on the line C0C1 and so the point X is not 

perspective on the two curves, yet the line XA establishes projective 
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correspondence.  Hence the two arcs cannot intersect in the interior. An 

alternative argument is as follows.  There must be perspective points Yk and Yl 

on the intersecting curves such that X is on opposite sides of the line YkYlA that 

establishes the correspondence.  Since this is impossible, there cannot be an 

intersection in the interior of the arcs either.  

 

Figure B.1.  Modified curved ray camera model. 
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