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Figure 1 Enhanced virtual 3-D scene exploration. The graph camera image (top) samples longitudinally the current street segment as well 
as the 3 segments beyond the first intersections (bottom left). The 4 side streets are occluded in conventional images (bottom right). 

 
Figure 2 Single-image comprehensive visualization of real-world scenes. The graph camera image (left) seamlessly integrates 3 video feeds 
(right) and shows all 3 branches of the T corridor intersection.

Abstract 
A conventional pinhole camera captures only a small fraction of a 
3-D scene due to occlusions. We introduce the graph camera, a 
non-pinhole with rays that circumvent occluders to create a single 
layer image that shows simultaneously several regions of interest 
in a 3-D scene. The graph camera image exhibits good continuity 

and little redundancy. The graph camera model is literally a graph 
of tens of planar pinhole cameras. A fast projection operation 
allows rendering in feed-forward fashion, at interactive rates, 
which provides support for dynamic scenes. The graph camera is 
an infrastructure level tool with many applications. We explore 
the graph camera benefits in the contexts of virtual 3-D scene 
exploration and summarization, and in the context of real-world 
3-D scene visualization. The graph camera allows integrating 
multiple video feeds seamlessly, which enables monitoring 
complex real-world spaces with a single image. 
 
CR Categories: I.3.3 [Computer Graphics] Picture/Image 
Generation—Viewing algorithms, I.4.m [Image Processing and 
Computer Vision] Miscellaneous. 
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1  Introduction 
Most 3-D computer graphics applications rely on the planar 
pinhole camera (PPC) model to compute images of a 3-D scene. 
One reason is that the PPC model is simple, enabling efficient 
software and hardware implementations that render complex 
scenes at interactive rates. Another reason is that the PPC model 
approximates the human eye well, producing familiar images. 
However, the PPC model has limitations such as a uniform 
sampling rate, a limited field of view, and a single viewpoint. In 
this paper we address the single viewpoint limitation. By 
definition, all rays of a PPC pass through a common point—the 
pinhole. This limits images to scene regions to which there exists 
direct line of sight. In scenes with complex occlusions, a PPC 
image captures only a small fraction of the scene. 

We introduce the graph camera, a non-pinhole that samples 
simultaneously multiple regions of interest in a 3-D scene. The 
graph camera integrates several PPC images into a single image 
with good continuity and little redundancy. The graph camera is a 
graph of PPC frusta constructed from a regular PPC through a 
sequence of frustum bending, splitting, and merging operations. 
Despite the camera model complexity, a fast 3-D point projection 
operation allows rendering at interactive rates. 

The flexibility of the graph camera model makes it useful in 
many contexts. In this paper we explore 3 applications. The most 
direct application is the enhancement of navigation in virtual 3-D 
scenes. Instead of being limited to a single viewpoint, the user 

benefits from an image that integrates multiple viewpoints, which 
allows viewing multiple scene regions in parallel, without having 
to establish direct line of sight to each scene region sequentially. 
The enhanced navigation enabled by the graph camera promises 
to reduce the time needed to find static targets and to greatly 
increase the likelihood that dynamic targets—moving or 
transient—are found. In Figure 1 the user position is shown with 
the red frame (bottom left). The graph camera image lets the user 
see up to as well as beyond the first street intersections. 

Another graph camera application is in the context of 3-D 
scene summarization, where the goal is to inventory the 
representative parts of a scene in a visually eloquent composition. 
A graph camera can be quickly laid out such as to sample any 
desired set of scene parts, producing a quality summarization 
image at a fraction of the time costs associated with previous 
techniques. In Figure 3 the graph camera was constructed to 
sample most building façades. Sampling the same buildings with 
a PPC leads to poor image space utilization. 

Finally, the graph camera is also useful for visualizing real-
world scenes. A physical implementation is obtained by assigning 
a video camera to each of the PPCs in the graph camera. The 
result is a seamless integration of the video feeds, which enables 
monitoring complex real-world spaces with a single image. 
Unlike individual video feeds, the graph camera image is non-
redundant and mostly continuous. In Figure 2 monitoring the hall 
way is facilitated by the graph camera image which bypasses the 
need to monitor individual video feeds sequentially. Moreover the 
moving subject is easier to follow in the graph camera image 
which alleviates the jumps between individual video feeds. 

2  The Graph Camera Model 
We relax the definition of a camera ray to the locus of 3-D points 
that project at a given image location, which allows for rays that 
are not a straight line. We define 3 basic construction operations 
on the frustum of a PPC (Figure 4). Given a PPC with center of 
projection (COP) C, a plane p, and a point C’, the bending 
operation changes the viewpoint to C’ beyond p. The splitting 
operation introduces two viewpoints Cl and Cr beyond planes pl 
and pr. Splitting is equivalent to two bending operations that act 
on subsets of the rays of the initial PPC. The merging operation 
takes two PPCs with COPs Cl and Cr and reduces the two 
viewpoints to one (Cm) beyond a given plane p. For all operations 
the resulting rays are defined by two connected segments. 

By definition, a graph camera is an oriented graph with PPCs 
at its nodes (Figure 5). The graph is constructed starting from a 
root PPC through a sequence of bending, splitting, and merging 
operations. For each operation, graph arcs connect the input 
PPC(s) to the output PPC(s). The graph camera rays originate at 
the COP of the root PPC and are defined by a chain of connected 
segments. The graph camera image is collected at the root PPC 
before any frustum operation (see image plane in Figure 5). 

  

Figure 3 Graph camera image that summarizes a cartoon town
scene (left) and conventional image for comparison (right).

Figure 4 Basic construction operations: bending (left), splitting 
(middle) and merging (right). Sample rays are shown in red. 

Figure 5 Graph camera with 5 PPC frusta. The PPC1 is split into 
convergent PPC2 and PPC3 to shrink the occlusion shadow of the 
rectangular object B. P and Q are projected at P’.



 

Since each ray is C0 continuous, the graph camera image is C0 
continuous, except for where splitting lines are visible. For 
example, in Figure 4 the line at the intersection of planes pl and pr 
is hidden by geometry (white rectangle) which avoids a 
discontinuity in the graph camera image. The graph camera image 
is non-redundant as long as the PPC frusta are disjoint. Unlike 
most camera models, the graph camera is defined based on the 
actual 3-D scene it is called upon to visualize. Its rays are 
designed to circumvent occluders and reach deep into the scene. 

Once the camera model is defined, graph camera images can 
be rendered using ray tracing, by intersecting the piecewise linear 
rays with scene geometry. However, faster feed-forward rendering 
is possible due to the availability of a fast projection operation. 
Given a graph camera with root frustum PPC0 and a 3-D point P 
inside a frustum PPCi, one can directly compute the image plane 
projection P’ of P using a 4-D matrix M0i = M0M1...Mi, where Mk 
(k = 0..i) are the 4-D PPC matrices for the frusta on the path from 
PPC0 to PPCi. For example point P in Figure 5 is projected with 
matrix M0M1M3. A PPC matrix is the product between the usual 
projection and the view matrices of the PPC. The matrix M0i is 
computed for each frustum PPCi at graph camera construction. 

Special care needs to be taken when deriving the projection 
matrix for frusta downstream from a merging operation. For 
example in Figure 5 point Q  is projected with matrix M0M1M3M4 
and point R with matrix M0M1M2M4. Although all rays inside 
frustum PPC4 converge to C4, the frustum is implemented with 
two sub-frusta, each with its own projection matrix. Projection is 
defined using a tree and not a graph, whose unique paths from a 
node to the root define the projection operation unambiguously. 

A scene modeled with triangles is rendered with a graph 
camera one PPC frustum at the time. The triangles intersecting 
frustum PPCi are found using a conventional hierarchical space 
subdivision scheme; we use an octree. A triangle is clipped with 
PPCi, vertices are transformed and projected with the matrix M0i 
of PPCi, and the projected triangle is rasterized conventionally. 
The graph camera image is a collection of PPC pieces, thus 
conventional linear rasterization can be used within each piece. 

3  Prior Work 

3. 1   Image-based rendering 
Several non-pinhole camera models have been developed for 
scene modeling and rendering. The light field [Levoy 1996, 
Gortler 1996] essentially combines multiple PPC images which 
amounts to a powerful camera model that captures a dense set of 
rays. Layered depth images [Shade 1998] allow for more than one 
sample along a PPC ray. Neither light fields nor LDIs can be 
easily transformed into single layer, continuous and non-
redundant images with multiple perspectives. 

Panoramas are single-layer images [Chen 1995] that capture 
virtual or real-world 3-D scenes in all directions, but the single 
layer comes at the cost of a single viewpoint. The single 
viewpoint constraint is relaxed by mosaicing techniques which 
still require nearly coincident COPs [Szeliski 1997]. Multiple 
viewpoints are desired rather than an acquisition artifact in urban 
landscape photography. Facades along a street are captured with a 
vertical push-broom camera and additional perspectives are 
integrated into the panorama where the proxy façade plane is 
discontinued [Roman 2004 and 2006, Agarwala 2006]. A 
precursor of street panoramas are multiple center of projection 
(MCOP) images [Rademacher 1998], which also collect samples 
along a user defined path. Compared to graph camera images, 
street panoramas and MCOP images provide a smooth perspective 
change which is possible due to the large number of push-broom 

acquisition viewpoints. A graph camera changes perspective with 
C0 continuity which keeps the number of viewpoints low. This 
enables feed-forward rendering for virtual scenes, and acquisition 
with only a few cameras for real-world scenes. 

Non-pinhole cameras have also been used in cel animation 
[Wood 1997]. Camera motion in a 3-D scene is simulated by 
viewing a multiperspective panorama through a sliding frame. 
Like MCOP images, cel panoramas are rendered by finely 
discretizing the camera path, which is slow. 

Occlusion cameras [Mei 2005, Popescu 2006, Rosen 2008] are 
a family of non-pinholes that enhance a PPC image with barely 
hidden samples to alleviate disocclusion errors when the 
viewpoint translates. A barely hidden sample is a sample that 
projects close to the silhouette of an occluder and is thus likely to 
become visible even for small viewpoint translations. Occlusion 
cameras and the graph camera have the common goal of creating 
a 2-D image of a 3-D scene that shows more than what is visible 
from a single viewpoint. However, occlusion cameras are 
designed to enhance a given PPC with a few extra samples, 
whereas the graph camera is designed to integrate multiple PPCs. 
Occlusion cameras do not offer the ray modeling flexibility 
required to reach distant regions of a complex 3-D scene and 
therefore they do not support graph camera applications (e.g. 
scene summarization, video feed integration). 

3. 2   Artistic rendering and computer vision 
Non-pinhole cameras are also used in multiperspective artistic 
rendering. In one system, PPCs are attached to individual scene 
objects, and the resulting sprites are composited in a multi-
projection image [Agrawala 2000]. The approach has the 
disadvantages of not scaling with scene complexity, of difficult 
visibility ordering, and of not supporting multiple perspectives per 
object. Another system [Yu 2004b] partitions an image plane into 
general linear camera (GLC) triangular images. A GLC is 
constructed from three given rays [Yu 2004a, Ponce 2009] so it 
offers some ray modeling flexibility. However, combining several 
GLCs is non-trivial. The solution adopted [Yu 2005] was to blend 
the rays of neighboring GLCs to provide a continuous ray space 
which generates an image with smoothly varying perspective. The 
resulting compound non-pinhole camera model does not provide 
fast projection and rendering is performed offline by ray tracing. 

Multiperspective images of real-world scenes can be 
constructed by re-sampling a video cube—a stack of images 
gathered by moving a video camera along a continuous path 
[Seitz 2003]. The video cube has been used for impressionism, 
cubism, and abstract aesthetic video effects [Klein 2002]. The 
collage artistic photography technique has also been reproduced 
computationally [Nomura 2007]. Individual PPC images are only 
roughly aligned, resulting in a multi-perspective image with 
visible seams, which are kept intentionally in order to convey 
subject or camera motion. Like in most previous multiperspective 
work, we strive to avoid seams; seams are visible only when an 
object moves between two frusta in a real-world graph camera, or 
when there is no geometry to hide a frustum split line. 

Computer vision research has also been devoted to 
overcoming the limitations of the PPC model. Whereas early 
efforts targeted producing omnidirectional cameras with the 
emphasis on preserving ray concurrency, more recent efforts 
developed non-pinholes. For example, the disparity embedded in 
a single image acquired with a catadioptric non-pinhole has been 
used for scene capture [Kuthirummal 2006]. Although the first 
physical implementation of the graph camera described here relies 
exclusively on conventional video cameras we will consider 
integrating reflective surfaces in the future for added flexibility. 



 

3. 3   Visualization 
The graph camera addresses the important visualization problem 
of alleviating occlusions in complex datasets in order to increase 
the visualization payload. One approach is to distort the dataset 
such that entities of interest are given preference and map to 
disjoint image locations (e.g. Generalized Fisheye Views [Furnas 
1986], the Hyperbolic Browser [Lamping 1996], the EdgeLens 
[Wong 2003], the Balloon Probe [Elmqvist 2005]). Although the 
graph camera model can be described as a distortion of 3-D space 
that makes the scene look like the graph camera image when 
rendered with a conventional PPC, designing the visualization 
directly in image space provides greater flexibility for overcoming 
occlusions and for achieving continuity. In technical illustration 
occlusions are handled using transparency and cutaway 
[Diepstraten 2002, 2003] techniques which respect global spatial 
relationships, but visualize outer layers with little detail. 

4  Scene Exploration 
In conventional 3-D scene exploration the user positions and 
orients a PPC interactively in order to gain direct line of sight to 
various regions of the scene. When a discovered region is 
uninteresting, the effort of navigating to the region and back is 
wasteful. We propose to explore 3-D scenes with a graph camera 
that continually adapts to the scene in order to reveal not only 
what is visible from the current position but also adjacent scene 
regions to which there is no direct line of sight. The additional 
information displayed by the graph camera image assists the user 
in selecting a navigation path that is more likely to reveal regions 
of interest, increasing navigation efficiency. We have developed 
several graph camera constructors which, given a 3-D scene and a 
current user position, define rays that circumvent occluders to 
sample multiple scene regions. The constructors can be used in 
combination but are presented here individually for clarity. 

4. 1   Portal-based constructor 
Portals such as doors, windows, and spaces between buildings in 
indoor and outdoor architectural scenes are natural gateways 

between neighboring scene regions. We have developed a graph 
camera constructor that allows the user to see directly into 
adjacent scene regions. In Figure 6 the graph camera captures a 
good view of the adjacent kitchen while the PPC sees only an 
uninteresting corner through the portal. 

Given a 3-D scene with predefined portals and a current view 
PPC0, the portal-based constructor builds a graph camera with a 
root frustum PPC0 and one leaf frustum for each portal visible in 
PPC0. Each leaf frustum PPCi is defined by bending the rays of 
PPC0 that sample the portal frame such that PPCi has a view 
direction normal to the portal plane. In Figure 7 a single portal is 
visible, shown with green. The root frustum PPC0 is shown with 
red and the graph camera rays are shown with blue. As the user 
navigates new portals become visible. The additional perspectives 
are introduced gradually by morphing the new view direction 
from the view direction of PPC0 to the normal of the portal plane. 
As the user approaches a portal, the leaf frustum view direction is 
morphed back to the PPC0 view direction, which maintains 
visualization continuity as the user enters through the portal. 

4. 2   Occluder-based constructor 
The converse of a portal is an occluder—a large opaque object 
that hides potentially interesting scene regions. We have 
developed a graph camera constructor that allows the user to see 
behind an occluder. Given a 3-D scene with a predefined occluder 
bounding box B and a current view PPC0, the occluder-based 
constructor builds a graph camera with rays that reach around B. 
The graph camera is constructed with a split followed by a merge 
(Figure 5). In Figure 8 the graph camera shrinks the occlusion 
shadow of the clock store to capture buildings and streets hidden 
in the PPC image, as well as the side faces of the clock store.  

4. 3   Maze-based constructor 
Portal and occluder based graph cameras have good disocclusion 
capability when the current user position is relatively close to the 
portal or occluder. However, when the current position is far 
away, the root frustum projection of the portal or occluder is 
small, which limits the quality of the visualization of the 
disoccluded regions. Consider for example the bottom right image 
in Figure 1. The left and right side street openings are too small to 
accommodate a good visualization of the side streets. 

We have developed a powerful graph camera constructor that 
achieves a good, user-controllable visualization of adjacent 
regions, independent of how big or how far the portal is. As a 
preliminary step, the set of possible desired user paths is modeled 

 

 
Figure 6 Portal-based graph camera image (top left and fragment 
right) and PPC image for comparison (bottom left).  

Figure 7 Visualization of portal-based graph camera from Figure 6.

Figure 8 Occluder-based graph camera image (top left), PPC image 
for comparison (bottom left), and ray visualizations (right).



 

with a maze. The maze defines virtual tunnels through which the 
user navigates during scene exploration. The maze also serves as 
virtual scaffolding for constructing a graph camera for each user 
position. The maze is built by fitting rectangular boxes to path 
intersections (Figure 9). The boxes, which can have different 
sizes, are connected by tunnels with four planar faces. The cross 
sections of tunnels are modulated with rings to allow modeling 
streets with building facades that are not aligned. 

Given a 3-D scene enhanced with a maze and a user position 
inside the maze, a graph camera is constructed that allows the user 
to see from the current position to the first intersection ahead, as 
well as along the virtual tunnels emanating from the first 
intersection. In order to allow the user to see behind, a similar 
graph camera is constructed pointing backwards. In Figure 10 
(top) the user is located at the quad Qu. The forward and the 
backward graph cameras each have 6 PPC frusta. The graph for 
the forward graph camera is shown Figure 10, bottom left. 

The forward graph camera is constructed using the maze (blue 
lines in Figure 10) starting from the user quad Qu. The root 
frustum PPC0 with COP C0 is constructed using the user quad and 
a field of view parameter. Points E and S0 are defined by the 
intersection of PPC0 frustum edge C0Qu with the near and far 
intersection box faces. Frustum PPC1 is constructed using points 
E, a, b, and a field of view parameter. PPC0 rays that hit between 
E and b are directed to the left corridor, and rays between b and a 
are directed to the forward corridor (see green lines). Points a and 
b are derived from ray split ratio parameters. For example, for an 
even (1/3, 1/3, 1/3) split, a needs to be half way between S0 and S1 
and Eb needs to capture the left 1/3 of the rays of PPC0. PPC3 is 

constructed using points E and S0 and a field of view parameter. 
PPC4l is built using points S0 and a, and field of view parameter. 
The right half of the graph camera is constructed similarly. 

The raw image produced by the forward graph camera is 
shown in Figure 11, where the forward-right perspective is 
emphasized using a split ratio of (1/6, 1/6, 2/3). The raw images 
are texture mapped to a display surface that rotates the back image 
180o while maintaining the connection to the top image, and that 
splits the image along discontinuities to obtain the final image 
shown in Figure 1. The final image shows in front (right panel) 
and behind (left panel) the user. Each panel has a left, a center, 
and a right perspective. The discontinuities between perspectives 
are defined by the visible parts of the vertical split lines through 
points S0, S1, S2, and S3 (Figure 10) and are shown as grey vertical 
lines in Figure 11. At a conceptual level, the two step process first 
achieves the desired disocclusion effect and then rearranges the 
image regions optimizing visualization eloquence. 

The graph cameras are rebuilt for every frame. Since the 
visibility of split lines can change abruptly from frame to frame, 
the depth of each split is averaged over 30 frames. When the user 
reaches an intersection the graph cameras turn in 4 steps. Let’s 
assume that the user desires to turn right (also see video). First, 
the lateral perspectives of the backward camera are retracted, after 
which the backward graph camera becomes a simple PPC with a 
view direction aligned with the current street. Then the forward 
left and forward center perspectives are retracted in favor of the 
chosen forward right perspective. In step 3 the backward camera 
turns to show the old forward left street (the new backward center 
street). Finally the lateral perspectives of the forward and 
backward cameras are redeployed. Retracting and deploying 
perspectives is done by changing split ratio parameters. 

5  Scene Summarization 
Summarization aims to capture important regions of the scene and 
to arrange them on the canvas in an eloquent composition. The 
resulting image should inventory, explain, and/or advertise the 
scene. The summarization image is not a map, in the sense that 
global spatial relationships are not preserved. Summarization 
images break free from single perspective rules to achieve 
comprehensive scene visualization and optimal composition. 

A first conventional method for summarization is drawing. 
The artist represents only certain scene regions and scales and 
rearranges them at will. However, the method is laborious and 
requires drawing talent. A summarization image can also be 
assembled from photographs or computer graphics renderings of 
the desired scene regions. Sophisticated digital image editing tools 
allow collating the ingredients seamlessly. However, the method 
is time consuming. We asked a computer graphics student to 
replicate the graph camera cartoon town summarization image 
from Figure 3. The resulting collage (Figure 12, left) was 
assembled in 8½ hours from 14 rendered shots. Another 
disadvantage of collages is lack of 3-D continuity: a car driving 
down the streets of the cartoon town would move discontinuously, 

  
Figure 9 Visualizations of maze used to construct graph camera.

Figure 10 Visualization of forward and backward maze-based 
graph cameras for Figure 1 (top), graph of PPC frusta for forward
graph camera (bottom left) and construction details (bottom right).

Figure 11 Top half of uneven split raw graph camera image.



 

jumping from shot to shot. A third conventional method for 
creating summarization images is to rearrange the 3-D models of 
important scene regions in a new 3-D scene which is then 
rendered with a conventional PPC (Figure 12, right). The method 
has the advantage of 3-D continuity—objects can move in the 
consistent 3-D space of the auxiliary scene. However, the method 
requires remodeling the infrastructure that anchors the original 
scene regions in the new configuration. This considerable change 
is reflected in the summarization image and the identity of the 
original scene is somewhat lost. 

The graph camera is well suited for designing summarization 
images quickly and with good continuity. We have developed two 
methods for constructing graph cameras for scene summarization: 
interactive construction, and recursive maze-based construction. 

5. 1   Interactive construction 
We have developed an interactive graph camera constructor that 
allows the user to add, configure, bend, split, and merge PPC 
frusta through a graphical user interface. The fast graph camera 
rendering algorithm allows for changes to the camera model to be 

propagated to the graph camera image in real time. Figure 13 
shows the graph camera constructed interactively to make the 
cartoon town summarization image in Figure 3. Construction took 
less than 5 minutes, a great improvement over the 8½ hours for 
the comparable collage. Moreover, the graph camera offers 
continuity: a car driving from the bakery (pink building) to the 
clock store moves continuously in the graph camera image. 

5. 2   Recursive maze-based construction 
Another method for building powerful 3-D scene summarization 
graph cameras is to use a maze that connects important scene 
regions, similar to the maze used in scene exploration (Section 4). 
Instead of stopping graph camera construction at the first 
intersection, the construction algorithm proceeds recursively until 
the graph camera covers the entire maze. Many maze traversal 
algorithms are possible, we use breadth first search. In addition to 
the RFL (right, front, left) type of intersection described earlier, 
the algorithm similarly handles simpler R, L, RF, FL, and RL 
intersections. The resulting graph camera image shows all scene 
regions traversed by the maze. The graph camera in Figure 14 has 
its root frustum at O and samples the cake conveyor belt to the left 
(a), outside the bakery through the door (b), the adjacent room 
through the tunnel (c), and then the door once again (d). 

6  Real-World Scene Visualization 
Creating a physical graph camera brings the benefits of 
comprehensive single-image visualization to real-world scenes. 
Each PPC frustum is implemented with a conventional video 
camera. Several problems need to be overcome. 

First, the graph camera rendering algorithm needs scene 
geometry. Providing high-resolution per-pixel depth for the video 
streams is a challenging problem which does not have a robust 
real-time solution yet. Fortunately the rendering algorithm can be 
amended such that video streams can be combined into a graph 
camera without the need of per-pixel depth. Given a frustum 
PPCi, the first projection of the sequence of projections to the root 
frustum PPC0 is implemented by the physical video camera. This 
first projection “flattens” the 3-D scene to a 2-D image which is 
projected successively by the subsequent frusta. Consequently, 
rendering with a frustum PPCi of a physical graph camera is done 
without needing to know scene geometry by simply rendering a 
texture mapped quad using frustum PPCi-1. The quad corresponds 
to the near face of frustum PPCi and the texture corresponds to 
the video frame acquired by the video camera of PPCi. 

 The second problem is extrinsic calibration of the cameras, 
which we achieve by registration to a coarse geometric scene 
model (i.e. a proxy). For the scene in Figure 2 we used a simple 
box model of the hallways. Although the video cameras could be 
registered without a proxy using only 2-D correspondences, the 
proxy makes the registration robust and globally consistent. 

The third problem is finding a placement of the PPCs that is 
physically realizable. Narrow fields of view are also desirable for 
the PPCs of a physical graph camera like the one used in Figure 2 
in order to control the amount of perspective foreshortening along 
the corridors. Large fields of view waste pixels on nearby side 
walls to the detriment of regions farther along the corridors. 
Camera A was placed as far back as possible, against the opposite 
wall, yet its field of view is still slightly larger than desired, 
exaggerating the importance of the side walls of the central 
hallway. A possible solution to this problem would be to push the 
camera back in software, which requires scene geometry. The 
proxy would be adequate for the corridor walls but estimating the 
depth for a subject in the corridor is more challenging. 

The fourth problem is implementing the clipping planes which 
separate the PPC frusta. We simulate near clipping planes using 

Figure 12 Collage and 3-D remodeling summarization images. 

 
Figure 13 Graph camera model visualization for Figure 3.

 

Figure 14 Summarization image rendered with a graph camera
constructed with the recursive maze-based algorithm (top), camera 
model visualizations (bottom), overall and inside bakery.



 

background subtraction, as illustrated in Figure 15. The subject is 
located in the left branch of the corridor so the correct graph 
camera image should not show the subject in the right branch. The 
video camera monitoring the right branch does not have the 
correct near clipping plane so it samples the back of the subject. 
We simulate the correct image by erasing the subject using pre-
acquired background pixels (Figure 2, left). Since the pixels 
erased are not live, some applications could prefer that they be 
highlighted in red to mark the uncertainty (Figure 15, bottom). 
Deciding from which video feed to erase the subject is done based 
on the subject’s location, which is inferred by triangulation 
between two or more cameras. A non-leaf video camera also 
needs far clipping planes, which are implemented by background 
subtraction, similarly to near clipping planes. 

The fifth and final challenge specific to the physical 
implementation of graph cameras is the visualization of an object 
moving between connected frusta. A correct graph camera image 
requires intersecting the moving object with the plane separating 
the frusta, which in turn requires per pixel depth. We use the 
approximate solution of fading the object out of the video frame 
of the old frustum and into the video frame of the new frustum as 
the object traverses the separation plane (see video). 

7  Discussion 
Contributions. We have presented a framework for designing and 
rendering multiperspective images based on a non-pinhole that 
integrates several conventional pinhole cameras into a C0 
continuous and non-redundant image. Graph camera construction 
takes into account the targeted 3-D scene. We have developed an 
interactive constructor as well as constructors that take advantage 
of portals, occluders, and user path mazes in the scene. The graph 
camera benefits are illustrated in the context of scene exploration, 
of scene summarization, and of real-world scene visualization. 

 Performance. Graph camera images are rendered efficiently 
in feed-forward fashion leveraging a fast projection operation. 
Performance was measured on a 4 Core Xeon 3.16GHz 4GB 
workstation with an nVidia 280 GTX graphics card, for 
1,280x720 output resolution (Table 1). The frame rate remains 
interactive even for the graph camera with 35 frusta. For the real 
world graph cameras the dominant computational task is 
background subtraction, which is implemented using CUDA 1.2.  

Limitations. The graph camera image is not C1 continuous, 
which translates into abrupt perspective changes between 

connected frusta (see video). Another limitation is that the current 
maze-based constructor assumes straight maze edges and right 
angle 4-way intersections. As discussed, limitations specific to 
real world graph cameras relate to video camera placement, to z 
clip planes, and to objects crossing between frusta. Also the real-
world graph camera depends on the robustness of the background 
subtraction algorithm. Each application should choose settings 
that produce an appropriate balance between false positives and 
false negatives. For example a false negative at the far plane 
incorrectly hides an object whereas a false negative at the near 
plane incorrectly shows an object from another frustum.  

The problem of occlusions can be solved by eliminating the 
occluder (i.e. cutaway techniques), by seeing through the occluder 
(i.e. transparency techniques), or by seeing around the occluder 
(i.e. multiperspective techniques). The graph camera is a 
multiperspective technique, and, like all other such techniques, it 
sees around occluders by introducing distortions that perturb 
global spatial relationships. Therefore the graph camera is not 
suited for applications where images are supposed to mimic the 
images the user would actually see in the corresponding real-
world 3-D scene, such as virtual reality, CAD, or interior design. 

8  Future Work 

8. 1   Potential graph camera improvements 
One area of future work is improving the quality of transitions 
between frusta. Whereas currently a transition is defined by a 
plane, using a transition region with a non-zero volume and 
interpolating the projection of points in the transition region 
should achieve a smooth transition. Interpolating the projections 
of the two frusta is equivalent to curving the rays of the graph 
camera. The projection cost is only marginally higher but the non-
linear projection raises non-linear rasterization issues, which can 
be mitigated by subdivision. For real-world scenes a first goal is 
to achieve C0 transitions. Whereas per-pixel depth would be 
sufficient, fortunately it is not also necessary: all that is needed is 
the line of pixels along which to connect the two video frames. 

We have introduced an additional stage to the multiperspective 
rendering pipeline that maps the raw image to a display surface 
increase the eloquence of the final image. We believe that further 
improvements are possible by using 3-D display surfaces as well 
as by adding annotations to the image (e.g. animated arrows). 

Shading for multiperspective rendering also needs further 
attention. One challenge is posed by view-dependent effects, since 
now there are multiple “eyes”. Should a car reflect the side streets 
exposed by the graph camera? Another challenge are 
contradictory shadows in the graph camera image. Graph camera 
rendering can be described as rendering a distorted world with a 
conventional camera, which presents the opportunity to 
experiment with consistent viewpoint and lighting. 

We will investigate developing graph camera constructors that 
do not require a predefined scaffolding to guide the construction. 
We will consider a top-down constructor which starts from the 
root frustum and then automatically finds openings in the scene 

 

Figure 15 Illustration of near clip plane simulation by background 
subtraction. The back of the subject is sampled by the video 
camera that is supposed to sample the right branch of the corridor 
(top). The back of the  subject is erased using a background image 
of the right corridor acquired before the subject appeared (bottom).

Scene Tris Constructor Illustration Frusta FPS
House 958K Portal Fig. 6, video 1-6 27
House 958K Interactive Fig. 15, video 13 6.7

Cartoon town 971K Occluder Fig. 8, video 5 31
Cartoon town 971K Interactive Fig. 3, video 7 25
Cartoon town 971K Maze Fig. 17, video 35 5.2

City 4,123K Maze Fig. 1, video 12 12
Real world 1 N/A Proxy Fig. 2, video 3 9.0
Real world 2 N/A Proxy Video 4 9.5

Table 1 Graph camera rendering frame rates. 



 

through which to extend rays. We will also consider a bottom-up 
constructor which starts from a predefined set of regions of 
interest. We will also investigate building graph cameras from 
moving video cameras, with challenges that include tracking the 
cameras and updating the graph camera topology. 

The benefits of current and future graph cameras will be 
quantified through user studies with tasks such as finding static, 
moving, or transient targets, and with variables such as graph 
camera complexity, graph camera intrinsic parameter values, and 
display surface design. We hope that the flexible multiperspective 
rendering framework offered by the graph camera will also be 
used for generating images to study visual perception from non-
pinhole stimuli for which virtually no previous work exists. 

8. 2   Future directions and applications 
Whereas in the applications explored in this paper the graph 
camera image is directly presented to the user, the graph camera 
image can also serve as an intermediate scene representation from 
which the final output image is computed efficiently. For 
example, a graph camera image with per pixel depth could 
provide a high-fidelity environment map for accelerating costly 
effects such as reflection or ambient occlusion. If the 6 PPCs 
corresponding to the faces of the cube map are replaced with 
graph cameras, rays could be designed as to sample all surfaces 
that are likely to be mirrored by the reflector. A key observation is 
that intersecting a graph camera depth map with a ray is not 
fundamentally more expensive than intersecting a conventional 
depth map: the intersection search space is still one-dimensional, 
defined by the piecewise linear projection of the ray. 

Another example is the use of graph camera images to 
alleviate the bandwidth bottleneck in remote rendering. A 
conventional PPC image sent from the server has a lifespan of a 
single frame at the client. A graph camera depth image however 
can be used to render several high-quality frames without any 
additional data from the server. Indeed, a graph camera image 
stores more samples than those visible from the viewpoint of the 
root frustum, which helps reconstruct frames as the viewpoint 
translates. A graph camera image also has good coherence thus 
conventional compression algorithms apply. Challenges that need 
to be overcome in this context include graph camera construction 
to minimize image size and maximize viewpoint translation range 
and encoding of view dependent color into the graph camera 
image for high-quality frame reconstruction at the client. 

As dataset sizes increase, scientific visualization pipelines 
shield the user from the full complexity of the dataset through 
automated preprocessing steps that identify potential data subsets 
of interest. The graph camera is well suited for visualizing several 
such data subsets simultaneously in a single image which could 
accelerate the process of weeding out false positives. The graph 
camera could also help uncover relationships between distant data 
subsets, which is crucial in dynamic contexts where the saliency 
of such relationships quickly degrades over time. 

We have begun exploring the use of the graph camera as a tool 
for integrating video feeds for surveillance. The graph camera can 
also offer a comprehensive occlusion-free view of the scene to the 
operator of a robot or of a weapon system. The operator can 
trivially select a target directly in the graph camera image and the 
guidance system, which is aware of the geometry of the graph 
camera, executes the maneuver transparently. 

The graph camera advocates a departure from the conventional 
approach of using a simple and rigid camera model in favor of 
designing and dynamically optimizing the camera model for each 
application, for each 3-D scene, and for each desired view. We 
foresee that this novel paradigm will benefit many other 
applications in computer graphics and beyond.  
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