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Abstract. In many applications, such as medical diagnosis, correctness of volume
rendered images is very important. The most commonly used method for gradient
calculation in these volume renderings is the Central Difference Method (CDM),
due to its ease of implementation and fast computation. In this paper, artifacts from
using CDM for gradient calculation in volume rendering are studied. Gradients
are, in general, calculated by CDM with second-order accuracy, O(∆x2). We
first introduce a simple technique to find the equations for any desired order of
CDM. We then compare the O(∆x2), O(∆x4), and O(∆x6) accuracy versions,
using the O(∆x6) version as “ground truth”. Our results show that, unsurprisingly,
O(∆x2) has a greater number of errors than O(∆x4), with some of those errors
leading to changes in the appearance of images. In addition, we found that, in our
implementation, O(∆x2) and O(∆x4) had virtually identical computation time.
Finally, we discuss conditions where the higher-order versions may in fact produce
less accurate images than the standard O(∆x2). From these results, we provide
guidance to software developers on choosing the appropriate CDM, based upon
their use case.

1 Introduction

Direct volume rendering is one of the most powerful and widely used visualization
techniques available for understanding 3D data. Users of these visualizations trust the
images they see are true to the underlying phenomena being studied. However, artifacts
from every stage of the volume rendering pipeline can potentially create inaccurate
images. This inaccuracy may have severe consequences, such as failures to diagnose
disease [1]. One important volume rendering pipeline stage is the calculation of gradients.
These values are critical because the gradient directions are used to light the volume, and
the magnitudes of these gradients are used for classification in multidimensional transfer
functions.

When studying gradients, there are many potential types of artifacts. The majority
of studies have evaluated artifacts from interpolation of gradients and developed new
techniques to minimize these errors. Examples include: calculating gradients from
analytical derivatives of filtering equations in order to produce fewer artifacts [2]; using
interpolations that produce fewer artifacts than the analytical method [3]; and using
global illumination in cases where the magnitude of gradient is too small to accurately
calculate a direction, such as in homogeneous materials cases [4].
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Although a number of advanced methods are available for calculating the gradient
field, far and away, the most popular approach is using Central Difference Method
(CDM) with second-order accuracy, O(∆x2). To our knowledge, no existing work has
considered artifacts coming from gradient values calculated using CDM3.

The CDM is based upon Taylor Series expansion that enables approximating the first
derivative of a scalar field with some bounded error, in this case O(∆x2). Although the
error within the CDM is well known, little has been done to measure its influence on
the quality and correctness of volume rendered images. To address this shortcoming in
the literature, we investigate how this albeit small error may impact the output image.
We compare the standard CDM approach with more accurate versions of the gradient
calculated using the Taylor Series, those with errors of O(∆x4) and O(∆x6). In particular,
we look at variations in gradient direction and magnitude in a variety of publicly available
datasets. Finally, we provide guidance for volume renderer designers, such that they can
know when it is appropriate to select an alternative approach.

2 Prior Work

Volume rendering consists of a wide variety of operations, including sampling, filtering,
classification, shading, and integration [6]. Each operation introduces artifacts, which
may decrease the correctness and/or quality of images. There are various studies of
artifacts in each stage of volume rendering.

In sampling, wood-grain artifacts are found with low sampling rate. According to
Nyquist-Shannon sampling theorem, the original continuous data can be reconstructed
from digital data if sampling rates are twice the highest frequency [7]. However, imple-
mentation of Nyquist-Shannon sampling theorem in volume rendering reduces the speed
of interaction (i.e. lower frame rate). Adaptive Sampling [8] or stochastic jittering [9]
are used in practice.

The filtering stage interpolates between multiple volume functions, usually through
bilinear or trilinear interpolation. Using interpolation functions with C1-continuity
produces better images. Examples include B-spline interpolation [10], Catmull-Rom
splines [11], and texture-based convolution.

The classification stage calculates the proper RGBA values by applying a transfer
function. The main error created in this stage is determined by whether the transfer
function is applied before or after interpolation. Generally speaking, post-interpolation
is better than pre-interpolation [12].

In the shading stage, the gradient is the main factor producing artifacts. The main
source of error comes from the interpolation of gradients. A common source of problems
is the case of low magnitude gradients, where interpolation produces noisy output. For
precomputed normalized gradients, interpolation may produce non-normalized gradients.
These can be easily renormalized on-the-fly. In addition, the precomputed method
may introduce quantization errors by storing the gradients in 8-bits texture channels.
Individually, these quantization errors are small. However, when accumulated, these
errors may result in wood-grain artifacts.

3 Usman et al. [5] use CDM with O(∆x4) as a standard to evaluate their calculations of gradients,
but they did not establish a justification for the use of O(∆x4) instead of O(∆x2).
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There are a variety of methods to calculate gradients, beyond just CDM, such as
kernel filter or other techniques mentioned previously. For a variety of reasons, O(∆x2)
CDM is still a common choice to calculate gradients in volume renderers. As far as
we know, no one has published research to evaluate artifacts coming from gradients
calculated using O(∆x2) CDM.

One important premise on the study of artifacts in volume rendering is that no
single definition of quality exists. Stochastic jittering is a good example. This technique
increases the uncertainty by using random noise to erase wood-grain artifacts. The
images have high visual quality, but also they may no longer be true to the original data.
The result is that many techniques have been published on the premise of “better image
quality” without clearly stating whether the basis is aesthetic, correctness, or both.

3 Central Difference Method (CDM)

The finite different stencil associated with CDM is calculated using the Taylor Series of
f (x+∆x), f (x), and f (x−∆x).

f (x+∆x) = f (x)+ f ′(x)∆x+
f ′′(x)∆x2

2!
+O(∆x3) (1)

f (x) = f (x) (2)

f (x−∆x) = f (x)− f ′(x)∆x+
f ′′(x)∆x2

2!
+O(∆x3) (3)

In these equations, x represents the current voxel, ∆x represents the distance between
voxels, f (x) represents the function value, and f ′(x) and f ′′(x) represent the first and
second derivatives, respectively. By solving these equations for f ′(x), we have found the
O(∆x2) CDM.

f ′(x) =
f (x+∆x)− f (x−∆x)

2
+O(∆x2) (4)

We can also place equations (1), (2), and (3) into a matrix.

 f (x+∆x)
f (x)

f (x−∆x)

=

1 ∆x ∆x2

2!
1 0 0
1 −∆x ∆x2

2!


 f (x)

f ′(x)
f ′′(x)

 (5)

To get the CDM equations, the matrix equation can be solved (A−1B = A−1AX) and
f ′(x) selected.

This approach can be generalized to work for both boundary (non-symmetric) cases
and higher-order cases by selecting additional input function values (e.g. f (x+2∆x),
f (x−2∆x), etc.) and expanding the Taylor series further, such that the matrix is square.
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4 Experiments

For this study, we used a variety of volume types from The Volume Library website [13].
All experiments were run on a Windows-based laptop with an Intel Core i7 processor
and NVIDIA GTX 880m GPU. The experiments were performed using a homegrown
volume renderer with the configuration shown in Table 1.

Table 1: Configuration of Volume Renderer
Sampling Rate: Greater than twice per voxel
Filtering: Trilinear
Classification: Pre-interpolation
Shading: Pre-computed gradients renormalized in fragment shader
Integration: 8-bits used to store each fragment value.

These conditions are relatively common ones. We do place some considerations
towards minimizing artifacts from other pipeline stages. For example, the sampling rate
is so high that trilinear interpolations will not show wood-gain artifacts. Additionally,
using pre-interpolation for classification avoids generating high frequency artifacts.
Finally, although gradients are precomputed, interpolated gradients are normalized in
the fragment shader.

For our results, we make an assumption that the O(∆x6) gradient is our ground truth
(i.e. no errors). We conducted several experiments to determine the influence of various
levels of accuracy for gradients, focusing on magnitude and direction separately. This
is because they tend to be used in different stages of the pipeline (i.e. magnitude in
classification, direction in lighting), rarely together.
Throughout, the absolute error (dm) and relative error (dr

m) in magnitude is calculated by:

dm = |A|− |B|, (6)

dr
m =
|A|− |B|
|A|

, (7)

where A is the gradient of the O(∆x6) voxel and B is the gradient of the same voxel with
either O(∆x2) or O(∆x4).

The absolute error in the direction of gradients (dd) is calculated by:

dd = 1− A ·B
|A||B|

. (8)

Since gradient direction is a normalized vector, relative error for gradient direction
cannot be calculate.

5 Results

We tested all of pvm files we could obtain from The Volume Library website [13], with
the exception of 16-bit XMasTree.pvm and 8-bit Porsche.pvm, which we were unable to
load. In total, we tested over 30 datasets. Due to space limitations, we discuss only a few
interesting cases here.
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(a) Shown with O(∆x2) (left), O(∆x4) (middle), and O(∆x6) (right), the first difference is in the
shape of the specularity. Secondarily, the O(∆x4) and O(∆x6) have darker illumination in the
holes of the bucky ball.

(b) Plots of the error in gradient magnitude for each
voxel with O(∆x2) (blue) and O(∆x4) (orange). The
histogram (left) shows the number of voxels with at
different absolute error levels. The center chart plots the
volume function value (horizontally) against the absolute
error (vertically). The right histogram plots relative error
(%) horizontally. Errors are calculated using Equation
(6) and (7).

(c) Plots of the error in gradient direction
for each voxel with O(∆x2) (blue) and
O(∆x4) (orange). The histogram (left)
shows the number of voxels with at dif-
ferent error levels. The right chart plots
the volume function value (horizontally)
against the error (vertically). Errors are
calculated using Equation (8).

(d) Images showing error in the gradient magni-
tudes with O(∆x2) (left) and O(∆x4) (right).

(e) Images showing error in the gradient direc-
tions with O(∆x2) (left) and O(∆x4) (right).

Fig. 1: Experimental results using Bucky.pvm.

5.1 Errors in Gradient Magnitude and Direction

Our results show that the gradients of each voxel calculated from O(∆x2) have greater
error than those calculated using O(∆x4). The comparison of the magnitude and direction
can be seen in Fig. 1. In particularly, differences can be seen in the results of lighting in
Fig. 1a.
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Fig. 2: The left half of each image is calculated
by O(∆x2), while the right uses O(∆x4). The
lighting in the left image is similar, but in the
right image, the right half shows specular spots,
which are not seen in the left half.

Gradient Magnitude Fig. 1b shows
the magnitude error for each voxel
using O(∆x2) and O(∆x4). The plots
shows O(∆x2) has greater error than
O(∆x4). For example, 6% of voxels
have 0.78% error in O(∆x2). On the
other hand, using O(∆x4), only 1%
of voxels have the same error (see
Fig. 1b, center).

Fig. 1d shows the distributions of
error on the image. Of particular note
is the the red-colored pentagon shape
on the surface of the bucky ball in
O(∆x2). In O(∆x4), small red spots
around the center hole of the bucky
ball are observed.

Fig. 3: Images of VisMale.pvm (left) and
Pig.pvm (right) where the left half of each is
calculated using the O(∆x2) CDM and the right
half uses O(∆x4) CDM. VisMale.pvm demon-
strates what happens with homogenous materials,
while Pig.pvm demonstrates what can happen
with high frequency edges.

Gradient Direction Fig. 1c shows
the error in gradient direction O(∆x2)
and O(∆x4), both showing greater er-
ror in O(∆x2) than O(∆x4).

Fig. 1e displays the distribu-
tion of errors in the gradient direc-
tion with O(∆x2) (left) the O(∆x4)
and O(∆x4) (right). While there is
some difference between O(∆x2)
and O(∆x4), the difference is not as
obvious as it was for the gradient
magnitude.

Fig. 2 shows rendered images of
Bucky.pvm. The left half of each use
O(∆x2) and the right uses O(∆x4).
In the right image, the white specular
highlights are observed. These are only visible under certain lighting directions and not
visible under O(∆x2). This represents a small, but nonetheless important, difference in
images produced with less accurate gradients.

5.2 Homogeneous Materials

Materials that are more or less homogeneous (i.e. they have consistent values) are
known to be problematic for CDM. Essentially, if all of the voxels surrounding me
have approximately the same value, my gradient magnitude is zero and direction is
underconstrained. In the O(∆x2) CDM, the stencil size is quite small, limited to 6
surrounding voxels. By using the O(∆x4) or higher CDM, the stencil footprint increases,
and the voxel gradients becomes more stable.
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(a) Images using O(∆x2), O(∆x4), and O(∆x6), respectively. The images show greater ringing
artifacts for CDMs that should produce more accurate results (i.e. O(∆x6)).

(b) Plots of the error in gradient magnitude for each
voxel with O(∆x2) (blue) and O(∆x4) (orange). The
histogram (left) shows the number of voxels with at
different absolute error levels. The center chart plots the
volume function value (horizontally) against the absolute
error (vertically). The right histogram plots relative error
(%) horizontally. Errors are calculated using Equation
(6) and (7).

(c) Plots of the error in gradient direction
for each voxel with O(∆x2) (blue) and
O(∆x4) (orange). The histogram (left)
shows the number of voxels with at dif-
ferent error levels. The right chart plots
the volume function value (horizontally)
against the error (vertically). Errors are
calculated using Equation (8).

(d) Measurement of error in gradient magnitude
for O(∆x2) (left) and O(∆x4) (right).

(e) Measurement of error in gradient direction
for O(∆x2) (left) and O(∆x4) (right).

Fig. 4: Experimental results using Cross.pvm

Fig. 3 (left) is an example of this. The left half of the image shows no texture in the
brain with O(∆x2). The right half, with O(∆x4) begins to show some of the texture detail.
Its important to recognize, however, that although the gradient is better constrained, that
does not mean the gradient is true to the underlying data. The real problem here is that
the data are either truly homogeneous or undersampled.

5.3 High Frequency Materials and Ringing Artifacts

Although theoretically more accurate, higher-order CDM does not always lead to an
accurate. High frequency surfaces, such as those seen in Fig. 3 (right) or Fig. 4a, are just
such failure cases. Here, the large sampling area of the O(∆x4) and O(∆x6) CDMs have
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Fig. 5: A simple rectangular input function (left), representing a high-frequency feature,
has O(∆x2) (top), O(∆x4) (middle), and O(∆x6) (bottom) stencils applied (center). The
resulting output (right) shows larger spread for the higher accuracy stencils. Since these
output represent the gradient in one direction, the larger footprints lead to the larger
ringing for those stencils.

led to a ringing artifacts. Figure 5 demonstrates how this occurs. The larger footprint
of the higher order stencils results in capturing the feature in the gradient calculation at
further distance.

Fig. 4b shows the error in the gradient magnitude for O(∆x2) and O(∆x4) CDM
versions. Both plots show the error in the gradient magnitude of O(∆x2) is larger than
that of O(∆x4)—the same result as Bucky.pvm. However, the assumption that the
O(∆x6) CDM is the ground truth lead us to this false conclusion. Fig. 4d shows the
distribution of errors in image space. As we can see, the errors are occurring in regions
where the the gradients of the high frequency surface voxels are not parallel. This is
obvious in the round dent, but it also occurs in the seam where the perpendicular surfaces
come together.

Fig. 4c shows the error for gradient directions with O(∆x2) and O(∆x4) CDM on
each voxel. Both plots show O(∆x2) has greater error than O(∆x4). Fig. 4e displays
the distributions of errors in the direction of gradients with O(∆x2) (left) and O(∆x4)
(right). The O(∆x2) shows darker than O(∆x4). However, this O(∆x2) does not have
the red lines, which we could see in the error for the gradient magnitude.

The bottom of the right images of Fig. 4a shows the bottom of the right side of
Cross.pvm image. O(∆x4) and O(∆x6) show extra lines that do not appear in O(∆x2).
This ringing artifact is well studied [14]. In this case, the higher order version contains
more artifacts than its lower order counterpart.
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Fig. 6: The time vs. O(∆x2), O(∆x4) and O(∆x6). The left shows the time to calculate
100 iterations. The right is the same result per voxel, normalized by dividing the time by
the number of voxels.

5.4 Times to compute CDM with O(∆x2), O(∆x4), and O(∆x6)

The time to compute gradients for all datasets are presented in Fig. 6. In most cases,
the time to calculate O(∆x4) is about the same as the O(∆x2). In fact, some of O(∆x4)
cases are less than O(∆x2). The time to calculate O(∆x6) is only about 20% more
than O(∆x2). We speculate that this small variation has something to do with memory
locality, since stencil operations tend to be memory bound. This is due to the relatively
small number of arithmetic operations performed relative to the large number of memory
operations in inner product calculations. For these types of memory bound operations,
cache performance is king. Larger stencils result in greater numbers of conflict misses.

6 Discussion & Conclusions

With these results, we give some brief guidance on selecting what type of CDM to use in
the real-world.

My CDM choice does matter. Although many images were similar under multiple orders
of CDM, there were small, possibly important differences, depending upon your usage
scenario. When scientific data is used for decision making, it is critical to keep the
images true to the data.

Higher-accuracy is (usually) better because it theoretically produces images true to their
underlying data (i.e. with lower error). However, one has to be cautious when blindly
applying either a low or high order CDM as the practice does not always live up to
theory. The choice may in fact depend upon the data.

Higher-accuracy costs more time, but it does not cost nearly as much as one might
expect. If the algorithm is well designed to take advantage of memory locality, a higher
order calculation may only suffer a small onetime overhead, in the case of static datasets.
If looking to improve performance, focus on aspects that impact the performance of
rendering per frame, such as sampling rate.
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O(∆x4) represents a good compromise between fast calculation, accuracy, and small
ringing artifacts. While renderers should really be adapting to their data, we have settled
on the O(∆x4) CDM as a better default than the commonly selected O(∆x2) version.
This finding supports the decision of Usman et al. [5] to use CDM with O(∆x4) to
evaluate their calculations of gradients.

In conclusion, when it comes to putting together a quality volume renderer, many
design decisions must be made. It is clear from our results that, while not the most
critical element, the choice of gradient calculation mechanism can have an important
impact on the final rendered image. As such we recommend more thought be put into
the choice, and, at the very least, volume renderer designers should chose O(∆x4) as
their default method.
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