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Abstract—We present a system for visualizing memory refer-
ence traces, the records of the memory transactions performed by
a program at runtime. The visualization consists of a structured
layout representing the levels of a cache and a set of data glyphs
representing the pieces of data in memory being operated on
during application runtime. The data glyphs move in response to
events generated by a cache simulator, indicating their changing
residency in the various levels of the memory hierarchy. Within
the levels, the glyphs arrange themselves into higher-order shapes
representing the structure of the cache levels, including the
composition of their associative cache sets and eviction ordering.
We make careful use of different visual channels, including
structure, motion, color, and size, to convey salient events as they
occur. Our abstract visualization provides a high-level, global
view of memory behavior, while giving insight about important
events that may help students or software engineers to better
understand their software’s performance and behavior.

I. INTRODUCTION

The interactions between modern hardware and software
systems are increasingly complex which can result in unex-
pected interactions and behaviors that seriously affect software
performance costing time and money. To address this issue,
students and software engineers often spend a significant
amount of their time understanding performance and optimizing
their software.

One common performance analysis technique is to track
cache activity within an application. This information is usually
provided for very coarse time granularity. At best, cache
performance is provided for blocks of code or individual
functions. At worst, these results are captured for an entire
application’s execution. This provides only a global view of
performance and limits the ability to intuitively understand
performance. An alternative to this coarse granularity is
to generate a memory reference trace, which can then be
run through a cache simulator to produce a fine-grained
approximation of the software’s actual cache performance.

The biggest challenge when using this approach is sifting
through the volume of data produced. Even simple applications
can produce millions of references, yet this data contains
valuable information that needs to be extracted to better
understand program performance. The use of statistical methods
or averaging simply produces a coarse understanding of
software performance, forgoing the detail available in the trace.
Static analysis of memory behavior is also possible [?], but
limited only to cases where the program behavior can be
deduced at compile time.

To address these problems, we propose visualizing the
simulated cache and the reference trace, allowing developers

to see their software with fine-grained detail, and bring their
experience and intuition to bear on understanding software
memory performance. We do this by introducing a system that
provides an abstract visualization of the cache as the reference
trace plays through it.

The goal of the system is to provide an intuitive understand-
ing of how the computer hardware affects software performance,
without the need to know or understand every feature of the
hardware itself. The resulting visualizations correspond to our
intuitive understanding of how caches work, yet are able to
convey cache activity that may be difficult to envision or else
are surprising in some way. Our approach is not a replacement
for other conventional approaches, but rather an additional tool
that can assist in software analysis.

Figure 1 shows four example images of our system visualiz-
ing different versions of the matrix multiply algorithm. Memory
locations, represented by point glyphs, are placed on concentric
rings based upon their cache residency. Lighter-colored, ghost
glyphs are placed in the higher levels of cache (and the main
memory region) to indicate duplication of data through the
levels of the memory hierarchy. The outermost ring contains
items in main memory, the middle ring contains items in the
level 2 (L2) cache, and the innermost ring contains items in
the level 1 (L1) cache. Our visualization provides an intuitive
understanding about how memory is used and evicted from the
cache. As locations are referenced, their glyphs move to the
center of the visualization, and as they age (and are eventually
evicted), they are pushed out towards the next concentric ring.

The remainder of the paper is organized as follows. In the
next section we discuss related work. Section III overviews
our system while section IV discusses the design decisions we
have made in our abstract visualization approach. Section V
discusses results and examines a few case studies. Section VI
concludes with future directions for this work.

II. RELATED WORK

A. Memory Behavior Visualization
Software profilers, programs that observe the runtime be-

havior of a target application and generate statistics about
where that application spent its time, are a basic tool for any
study of software performance. Well-known examples include
GNU GProf, VTune, and Shark. These programs report the
amount of time spent in various functions or lines of code,
allowing developers to direct their optimization effort. They
are capable of providing, for example, aggregate cache miss
statistics from hardware performance counters, but generally



(a) Standard 16×16 matrix multiply. (b) Transposed-storage 16×16 matrix
multiply.

(c) 16×16 matrix multiply with 4×4
blocking.

(d) 12×12 matrix multiply with 4×4
blocking.

Fig. 1. Matrix multiply in various incarnations. The standard algorithm shows good cache behavior for the left-hand matrix but poor behavior for the
right-hand matrix. One solution is to operate on a transposed-storage version of the right-hand matrix, which results in better cache behavior, but a loss of
generality in the allowed matrix operations. A common solution between the two is matrix blocking, in which submatrices are operated on to accumulate the
final result piece by piece. By operating on small submatrices that fit into the cache, we can improve the cache performance of the multiply while keeping the
generality of the standard matrix multiplication algorithm.

they do not provide information about how memory was used
during the application’s execution. Performance counters can
also be accessed from applications by making use of specialized
libraries [1]. The visualization provided by profilers is usually
limited to graphs of the data that can show where the application
spent more time, but not necessarily why.

Software profilers generalize to a certain class of visual-
ization tools, exemplified by Vampir [2] and Tau [3] which
use runtime profiling information to produce post-mortem,
statistically-guided visualizations. They use classical infor-
mation visualization techniques to show trends in bulk data
about, for example, communication patterns between nodes
of a cluster, and allow for the developer to identify high-
level performance bottlenecks. They are essentially the visual
counterparts of traditional code profilers.

More specific visualizations can provide insight about
execution and performance, at many levels of detail. At the
system level, whole-system data is collected in an attempt to
visualize the various parts of the machine as an execution is
carried out. Stolte et al. [4] present a system that visualizes
important processor internals, such as functional unit utilization
and pipeline stalls, and allows for drilling down to show details
about certain subsystems. At the application level, runtime
data is visualized in the familiar context of source code.
For example, Heapviz [5] tracks heap allocations and their
pointer dependencies in the Java runtime, displaying the heap’s
graph structure, allowing developers to see how their data
structures develop during the run, possibly finding errors such
as misallocations, unbalanced hash tables, etc.

Several approaches deal with the memory subsystem specif-
ically. The Cache Visualization Tool [6] shows cache block
residency, visualizing cache line contention due to the lay-
out and access patterns of several active data structures.
KCacheGrind [7] is a visual frontend for CacheGrind that
visualizes the calling context over time, correlating cache
miss costs with lines of source code. Yu et al. [8] use
cache simulation to produce a static view of cache behavior
over time. Each pixel in an image corresponds to the cache
effect (hit or miss) of a single reference; as a whole, the

image serves as a time-indexed “map” of cache performance.
YACO [9] is a cache optimization tool focusing on performance
statistics. Cache misses are counted and plotted in different
ways, highlighting performance bottlenecks in lines of code
and data structures. In our own earlier work, the Memory
Trace Visualizer (MTV) [10] visualizes a reference trace
and performs cache simulation, showing access patterns as
they occur, and cumulative cache performance. By contrast,
Grimsrud et al. [11] use traditional information visualization
techniques, developing precise definitions of access locality,
and visualizing the resulting measures in surface plots.

These approaches all provide specific insights, but none of
them gives an overarching view of the behavior of the memory
system and cache, including the elements residing therein,
whereas our goal in the current work is to set up a system in
which such a global view of many elements of the memory
subsystem is possible, leading to insights about large-scale
patterns and behaviors.

B. Organic Visualization

Our current work is inspired by organic visualization [12],
an approach that imbues the visual elements with behavioral
rules that allow them to self-organize into meaningful visual
structures, much as individual cells are able to work together
to constitute a whole organism. Codeswarm [13] is an example
of the technique as applied to software visualization, in
which source code repository data directs visual elements
representing files and developers to form groups according
to tight relationships between them. For instance, frequent
committers associate into circles with their working files.
Motion, proximity, color, and size all work together to express
the important relationships between the participants. Our
current work is inspired by systems such as Codeswarm, as
such organic visualization systems are able to handle many
visual elements by allowing them to aggregate automatically
into higher-level structures—such as levels of a cache and
semantically delineated regions of memory—so that their sheer
volume does not obscure the insights they try to transmit.
Compared to this more organic visualization behavior, our



earlier system MTV addresses the same problem of visualizing
reference traces, but in a more regimented, litral way. Concrete
access patterns are more visible in MTV, while our present work
is better able to show cache dynamics and data motion. As with
much of the work described here, our system is trace driven,
and performs cache simulation to derive some performance
statistics that can be associated to the trace. In the next section
we detail just how our system works, both in terms of visual
element design, and their prescribed behaviors.

III. SYSTEM OVERVIEW

In this section we briefly outline the data flow in our
visualization system.

Memory Reference Traces. The system relies on memory
reference traces collected from running applications as its
primary data source. The traces are simply lists of addresses
accessed by the application as it runs, together with a code
indicating the type of transaction (i.e. read or write). We collect
these at runtime using Pin [14], a dynamic binary rewriting
infrastructure that allows for arbitrary code to be attached to any
instruction at runtime. Collecting a reference trace is relatively
straightforward: each load or store instruction is directed to
trap to a recording function which writes the read-write code
and the effective address to disk. We are also able to use
debugging symbols in the executable to record correlations
of instructions to line numbers in source code. This allows
the visualization to correlate memory activity to the familiar
source code context for the visual analysis. In a final step, the
log of memory activity is filtered to allow the visualization to
only display activity from variables and algorithms of interest
to the developer. In this way, we can avoid displaying the
many activities application perform which are not important
to understanding the application’s behavior.

Cache Simulation. We drive our analysis and visualization
with cache simulation, so that users may start to understand
how their application performance is affected by its interaction
with the cache and the memory subsystem. Though there are
several cache simulators available for research use, we use a
home-grown simulator that allows us to have more control over
what kinds of data can be extracted as output. The simulator
takes as input individual reference records from the trace and
computes their effects on the working sets in each cache level,
reporting what level of the cache was hit, and which data items
were moved from level to level or were evicted entirely.

Visualization. The results of the cache simulation are fed,
step by step, to our visualization system. The system has a
structural layout reflecting the simulated memory architecture,
over which glyphs representing pieces of data arrange them-
selves to reflect the ongoing dynamic updates to the cache state
as encoded in the reference trace and the cache simulation.

The current work focuses largely on the last component,
visualization. Data collection and cache simulation are crucial
parts of this effort, however the difficulties and issues they
bring are outside the scope of this work. In the next section we
describe the visualization system in careful detail, examining
and describing our design choices, and how they add up to
provide an insightful visual expression of the data in the
reference trace.
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Fig. 2. Left: Our visualizations are structured schematically as concentric
rings representing the main memory and levels of cache. The central point
represents the CPU with its registers. Increasingly distance from the center
are the L1 and L2 caches, with main memory as the farthest ring. Right:
Against this backdrop, point glyphs representing data items move from place
to place to indicate residency in the various levels of the memory hierarchy.
In the cache levels, the glyphs arrange themselves into groupings indicating
the associative cache sets, with data on the verge of eviction appearing nearer
the boundaries between the levels.

IV. VISUALIZING REFERENCE TRACES

In this section we describe the design of our system, focusing
on the nature and usage of individual visual channels. In
particular, we distinguish time scales in each channel by
“frequency,” reflecting the time scales over which changes
in visual qualities tend to persist. Channels engage a low
frequency when visual elements exhibit a longer-term, stable
behavior, and a high frequency when they change rapidly. By
way of example, we can consider the position of a data glyph—
the low-frequency behavior is to settle into a position within
a cache level or main memory; the high-frequency behavior
is to move from one area to another in response to a cache
level eviction event. Generally speaking, we use low-frequency
qualities to establish baselines or express average behaviors
over a long time period, reserving high-frequency qualities to
reflect sudden changes in state, or very important events that
need to draw the viewer’s attention.

In broad strokes, the visualization system consists of a
structural layout representing the levels of cache, and main
memory, over which data glyphs, representing individual
addressable pieces of memory, move according to behavioral
rules. The positions of these glyphs encode their presence in
one or more levels of cache.

A. Structured Cache Layout
The data glyphs occupy a structured visual space representing

the machine architecture under consideration (Figure 2, left).
Because locality is so important in understanding cache and
memory behavior, the visual space encodes both spatial and
temporal locality of memory using spatial layout design choices.
The design is literally CPU-centric—the physical center of
the display represents the computing core, encompassing the
operation of functional units as well as the registers containing
the working set of data. In radial layers about the center, we
reserve space for the levels of cache, from fastest to slowest,
while main memory is represented as a final radial layer beyond
all the levels of cache. This structuring reflects the idea that
as storage levels grow larger as they become slower and more
“distant” from the computing core. Visually, it means that data



Fig. 3. The common pattern of array initialization, as visualized in our
system at three points in time. The red streak lines indicate cache misses for
references to the green array. The data comes into L1 and is initialized with a
series of write operations. As the next batch of data comes in, the initialized
data becomes “stale” and moves slowly first out of L1 to L2, then out of
L2 back into main memory. The bundle of red cache miss lines is seen to
rotate through the array as the data stream through, visually characterizing
this pattern of access.

glyphs representing pieces of memory must move from farther
distances in order to occupy the CPU.

The glyphs further organize themselves to reflect the oper-
ation of particlar cache levels (Figure 2, right). For instance,
in an L1 two-way cache, there are two sets into which data
items may map—these are represented as interlocking spirals
emanating from the center of the display. Similarly, the four
sets of the L2 cache are represented as spiral arms emanating
from the boundary of the L1 region. We choose to show the sets
distinctly because this feature of caches is often abstracted away
in the thinking of programmers, yet it may matter very much
to cache performance. By rendering the distinction visible,
we are able to demonstrate the resulting cache behavior and
performance directly.

As mentioned above, the placement of the cache sets reflects
their progressive “distance” from the CPU core; within each
cache set representation, distance also encodes the eviction
order, with glyphs that are about to be evicted from the cache
positioned further away from the center, on the border with
the slower cache level to which they will be sent.

A common cache design uses the “least recently used” (LRU)
heuristic in deciding which cache block should be evicted when
a new block arrives. Under an LRU block replacement strategy,
distance from the center of the display can also be taken to
encode time, so that glyphs that are more “stale” (i.e., have not
been accessed for a long time) tend to appear further from the
center. This placement rule renders certain access behaviors
clearly visible. For instance, a common memory access pattern
is that of array initialization, in which a newly created array
must have its entries all set to some base value (Figure 3).
Tracking a single data item d through the cache would reveal
that at some point in time, it is brought into L1, where it is set
to zero. As subsequent data items are processed, d becomes
older in the L1, so it progressively moves further away along
its spiral arm. When it reaches the end of the spiral, and yet
another block is brought into L1, it is evicted to L2, where a
similar process occurs, finally ejecting d back to its original
home in main memory. Because time is, in this way, encoded
as distance from the center, d moves along a radial path as
it ages, eventually leaving the cache altogether. The visual
pattern makes clear how the lack of reuse of d makes it both
“older” and pushes it “far away” at the same time.

TABLE I
VISUAL CHANNELS ENGAGED IN OUR SYSTEM

Visual Channel High Frequency Low Frequency

Structure Eviction order Cache level

Motion
Change in resident Changes in eviction order

cache level within cache level

Size Access —

Color Cache miss Home memory region

B. Data Glyph Behavior

Figure 2 demonstrates the static structuring we have designed
as the space in which our visualization occur. In fact, almost
every dynamic aspect of this visualization occurs via the
behavior of the data glyphs. In this section, we describe the
visual channels occupied by the glyphs and how they make use
of these channels at both low and high frequencies to transmit
information about the reference trace.

Motion. One of the glyphs’ basic jobs is to move from
place to place to express their changing occupancy of different
memory hierarchy levels in response to cache events. Because
glyphs are alloted the same amount of time for each move,
larger distances are covered at higher velocities than shorter
ones. Important events such as cache misses and evictions
appear as visually striking, higher velocity actions than do
cache hits; when a flurry of such events occurs, the effect is a
jumble of high-speed activity which appears very clearly and
draws the viewer’s attention (Figure 3 demonstrates this idea
for a specific kind of memory access pattern).

Within a particular cache level, slower motions to the head
of the cache set indicates a cache hit. With many cache hits
occurring in a row, the visual character is that of several glyphs
vying for the head position in the cache. The volume of activity
is again expressed by volume of motion, but the short distances
involved serve as a visual reminder that the observed behavior
exhibits good locality. This channel is naturally high-frequency,
as glyphs cover long distances quickly only when they are
evicted from one cache level and enter another—a momentary
state change that occurs locally in time. The low-frequency
component is simply lack of motion, expressing residency
within the current level of cache. Furthermore, we distinguish
between data entering the cache (in response to a cache miss),
and data leaving the cache (due to eviction)—the former is
expressed by fast, straight-line motion, while in the latter,
glyphs move in a wider circular motion to suggest fleeing.

As noted before, position also plays an important role
in expressing the cache performance. The cache levels are
arranged so that their distance from the center reflects their
architectural distance from the CPU; the distance away from
the center in each cache level further reflects how old each
access is, as measured from the last time it was accessed.
Therefore, data items with poor utilization slowly migrate to
the outer edge of their home cache levels, and are evicted by
incoming data items at the appropriate time to a farther cache
level. By watching this slowly developing positional change,
one may learn about the effect of under-utilization of these
data items.



(a) No history (b) 16 frames (c) 32 frames (d) 64 frames

Fig. 4. Demonstration of the effect of history pathlines on the visualization. These four images are of the exact same simulation time, varying only in the
amount of history accumulated into the fading trails. In (a) we see only the current animation frame, with no sense of history. In (b) we see the last 16 frames,
which show that L1 hits have been taking place in the recent past. In (c) there is evidence of a recent cache miss, and an associated eviction event, while in (d)
we see these same events in heavier detail. Note that while the same set of events is visible in (c) and (d), the longer history trail in (d) tends to obscure the L1
activity that is clearer in (b). By providing an interactive control for this feature, the user can select the amount of history that is appropriate for the current
visual analysis task.

Color. Each glyph’s color reflects the region of memory it
comes from. For example, Figure 8 shows several arrays of data
from a particle simulation, each containing a certain type of
simulation value (mass, velocity, etc.). Using the region identity
as the base color for the glyphs allows for understanding
the composition of the current working set at a glance. In
Figure 1(a), L1 is seen to contain elements from the two
multiplicand matrices in a particular order.

The region identity occupies the low-frequency component
of the color channel; it may also be used to indicate important
events at a high-frequency as they occur. For instance, when
glyphs move from slower cache levels to faster ones (i.e.,
“closer” to the CPU), this indicates a cache miss event, which are
important to understand in achieving high software performance.
Therefore, as the glyphs move to the L1 cache in response
to such an event, they flash red momentarily to indicate their
involvement in the cache miss event.

Size. Along with color, the size of the glyphs makes up their
basic visual composition. The data glyphs all have an equal
baseline size (i.e., the low-frequency size channel empty) in
order to emphasize the relative composition of the cache levels
without singling out any particular data items.

The high-frequency size channel is used to redundantly
encode an access to a particular data item. When a data item
is accessed, it pulses larger momentarily, with the effect of
highlighting it among all the data items present in the cache
level along with it. When the data item is not already present
in the L1 level, its pulsation can be seen as it moves into L1
in response to the cache miss event, once again highlighting
the important event (in this case, the pulsation redundantly
strengthens the red glow as discussed above).

C. Time-Lapse Mode
Memory reference traces can be very large; as such, the vi-

sualization produced from it can be intractably long to observe.
One option would be to simply speed up the visualization by
increasing the speed of trace playback and glyph motion. This
approach works until the speed becomes so high that glyph
motion is no longer visible.

To address this limitation, we have taken the approach of
compressing several timesteps into a single animation frame,

encoding the changes in glyph positions through time by
using pathlines. First, a fast forward speed is set (e.g., 2×,
4×, etc.), indicating the number of animation frames to skip
in visualization. The positions of glyphs are calculated for
those skipped frames, and a pathline is used to connect the
glyph positions at those intermediate times. When the time-
compressed frames are played at a normal speed, simulation
time appears to have sped up dramatically, yet the pathlines
keep the sense of evolving time coherent.

The pathlines can be controllably extended further into
history as desired. Figure 4 shows four different settings for
the tail length for the same time step. Increasing the tail
length shows more events, but also tends obscure individual
events—the tradeoff can be managed by the user interactively.
Transparency in the pathlines indicates age, older events
appearing more transparent, while newer events appear opaque.
The time-lapse view therefore shows higher-order temporal
patterns in addition to managing the commonly long time scales
present in most reference traces.

D. Summary Views

The structured layout also provides for displaying a general
quantity computed from the trace as a whole, allowing, for
example, statistical information about the trace to be included
in the display. The computed value is displayed in a soft,
colormapped disk behind the areas reserved for the cache levels.
In our examples, we have computed the “cache temperature,”
a measure of the proportion of transactions in each cache level
resulting in a hit. More precisely, each reference trace record
causes a change in the cache: each level may either hit, miss,
or else be uninvolved in the transaction. These are assigned
scores (a negative value for a miss, a positive value for a hit,
and zero for noninvolvement) which are averaged over the last
N reference trace records. The assigned scores may vary for
different levels; for example, the penalty for a miss is higher
for the L1 cache, because once a cache line is loaded into L1, it
will have more of a chance to make heavy reuse of the data than
a slower level would. In each level, the cache temperature rises
above zero when the volume of data reuse exceeds the “break
even” point, and falls below zero when there is not enough



reuse. When a cache level sits idle (because, for instance, faster
levels are hitting at a high rate), its temperature gradually drifts
back to zero. The metaphor is that new data are cold, causing a
drop in temperature, but accessing resident data releases energy
and raises the temperature. Between these extremes, sitting
idle allows for the temperature to return slowly to a neutral
point.

The cache temperature is displayed as a glowing color behind
the appropriate structural elements of the display. We have
used a divergent colormap consisting of colors that naturally
express relative temperatures: it runs from white in the middle
(the neutral color indicating no activity, or a balance of hits
and misses) to red at the warm end (indicating a relatively
high volume of cache hits), and to blue at the cool end (for a
relatively high volume of misses).

The cache temperature glyphs provide a context for the
patterns of activity that occur over it. When the cache is warm,
the pattern of activity will generally show frequent data reuse,
while there may be many patterns to explain a cold cache.
The changing temperature colors help to highlight periods of
activity leading to both kinds of cache behavior.

V. RESULTS AND DISCUSSION

In this section we review several case studies, identifying
performance and behavioral characteristics that can be seen
with our visualization methods.

A. Matrix Multiply

Matrix multiplication is ubiquitous in many computing fields
and as such its caching performance has been of interest to
programmers. Here we examine the cache behavior of matrix
multiply using our visualization approach.

Standard Algorithm. The standard matrix multiplication
algorithm computes dot products of the rows of the left matrix
with the columns of the right matrix. This algorithm achieves
good cache characteristics for only one of the matrices, since
the other must have its elements accessed in an order that does
not correspond to its layout in memory. Visually, it can be seen
that the cache contains contiguous blocks from one array, and
separated blocks from the other; the separated blocks each have
a single element that is accessed during each dot product, and
these blocks flow in and out of L1 for each column (Figure 5).

Figure 1(a) demonstrates that the cache misses incurred by
the right matrix (in green) are almost constant, whereas the left
matrix (purple) is able to achieve much more data reuse of its
data. The lack of reuse in the right matrix is conveyed visually
by new data streaming into L1 as older data is ejected from
the cache in an almost pipelined manner. The misses come
from the ejected data having to re-enter the cache every time
a column is traversed.

Transposed Matrix Multiply. The visualization leads to a
simple idea: if we stored the transpose of the right matrix,
then we would improve its caching behavior by accessing its
rows instead of its columns. Figure 1(b) shows that the number
of cache misses is largely reduced. The left matrix (purple)
is still seen to have better cache residency and reuse; this is
due to the fact that the dot products of a single row from that
matrix are computed against all columns of the right matrix,
so it tends to reside in the cache for longer.

B1,1  B1,2  B1,3  B1,4  B1,5  B1,6  B1,7  B1,8

B2,1  B2,2  B2,3  B2,4  B2,5  B2,6  B2,7  B2,8

B3,1  B3,2  B3,3  B3,4  B3,5  B3,6  B3,7  B3,8

B4,1  B4,2  B4,3  B4,4  B4,5  B4,6  B4,7  B4,8

B5,1  B5,2  B5,3  B5,4  B5,5  B5,6  B5,7  B5,8

B6,1  B6,2  B6,3  B6,4  B6,5  B6,6  B6,7  B6,8

B7,1  B7,2  B7,3  B7,4  B7,5  B7,6  B7,7  B7,8

B8,1  B8,2  B8,3  B8,4  B8,5  B8,6  B8,7  B8,8

A1,1  A1,2  A1,3  A1,4  A1,5  A1,6  A1,7  A1,8

A2,1  A2,2  A2,3  A2,4  A2,5  A2,6  A2,7  A2,8

A3,1  A3,2  A3,3  A3,4  A3,5  A3,6  A3,7  A3,8

A4,1  A4,2  A4,3  A4,4  A4,5  A4,6  A4,7  A4,8

A5,1  A5,2  A5,3  A5,4  A5,5  A5,6  A5,7  A5,8

A6,1  A6,2  A6,3  A6,4  A6,5  A6,6  A6,7  A6,8

A7,1  A7,2  A7,3  A7,4  A7,5  A7,6  A7,7  A7,8

A8,1  A8,2  A8,3  A8,4  A8,5  A8,6  A8,7  A8,8

C1,1  C1,2  C1,3  C1,4  C1,5  C1,6  C1,7  C1,8

C2,1  C2,2  C2,3  C2,4  C2,5  C2,6  C2,7  C2,8

C3,1  C3,2  C3,3  C3,4  C3,5  C3,6  C3,7  C3,8

C4,1  C4,2  C4,3  C4,4  C4,5  C4,6  C4,7  C4,8

C5,1  C5,2  C5,3  C5,4  C5,5  C5,6  C5,7  C5,8

C6,1  C6,2  C6,3  C6,4  C6,5  C6,6  C6,7  C6,8

C7,1  C7,2  C7,3  C7,4  C7,5  C7,6  C7,7  C7,8

C8,1  C8,2  C8,3  C8,4  C8,5  C8,6  C8,7  C8,8

X =

Working Sets 1 & 2

SingleWorking Set

X =
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Fig. 5. A schematic view of the cache properties of matrix multiply. Top:
The standard algorithm computes dot products of rows of the left hand matrix
with columns of the right hand matrix. This requires pulling the indicated
cache lines into the cache. Unfortunately, as the columns of the right hand
matrix are accessed, the upper lines will tend to be evicted, causing them to be
pulled in again for each column, leading to poor cache performance. Middle:
One simple idea for optimizing the multiplication is to compute with the
transpose of the right-hand matrix, accessing its rows rather than its columns
during the computation. The access patterns for both matrices become spatially
coherent, but at the cost of restricting where the transposed matrices may
be used. Bottom: By blocking the matrix multiply, we can bring in fewer
numbers of cache lines at a time, operating on the full set of data present
before bringing in a new block on which to operate. The results are eventually
accumulated in the output matrix, the correct product is computed with better
cache behavior than the standard algorithm. Blocking retains some of the
locality of the transposed approach, while also keeping the generality of the
standard matrix multiply.

Blocked Matrix Multiply. Storing transposed matrices
restricts the allowed operations performed on them—transposed
matrices can only participate as the “right matrix” in any
multiplication. A common cache optimization for the standard
algorithm is instead to use blocking, in which submatrices
are repeatedly multiplied and accumulated in the final output.
Rather than a single row of one matrix and a single value of one
column residing together in the cache at a time, blocking allows
for the submatrices to occupy the cache instead, occupying a
middle ground between the standard and transposed algorithms,
while retaining the generality of standard matrix multiply.

Figures 1(c,d) show that the overall volume of cache misses
is reduced, and is now more evenly distributed between the
matrices. As the submatrix lines are brought into cache, they
remain there relatively longer and get better data reuse than in
the naive case.

B. Sorting Algorithms
Sorting algorithms are a natural choice for demonstrating

reference trace visualization, as the algorithms are usually
straightforward and simple to implement and understand, and
therefore have simple yet important interactions with the cache.
In this section we compare two well-known sorting algorithms,
uncovering their cache performance characteristics: bubble
sort and merge sort. Bubble sort is known for its slow O(n2)



Fig. 6. Bubble sort, a sorting algorithm in which progressive sweeps swap the
remaining largest element to the correct location. Because the sweeps become
progressively shorter, the size of the working set continuously decreases until
it fits first within L2, and then within L1, leading to good cache behavior at
the end of the algorithm.

average-case running time, but it has good cache performance
characteristics. By contrast, merge sort has a better running time,
and we demonstrate its particular cache behavior characteristics.

Bubble Sort. Bubble sort is a well-known sorting algorithm
with a very simple implementation, in which repeated sweeps
of the array to be sorted cause large items to be swapped
to the end. After the ith sweep, the ith largest element is
sorted into place; therefore, the algorithm requires N sweeps
of steadily decreasing length in the worst case to sort the entire
list. The visualization of the memory behavior of this algorithm
(Figure 6) shows an interesting characteristic—as the algorithm
nears completion, and the size of the remaining elements to
sort begins to fit in the cache, cache performance steadily
improves. During the first sweep, all elements of the array
are accessed in turn, and the visualization shows every block
of values entering and then exiting the cache. The L1 cache
temperature rises due to the high volume of swaps occuring
there, while the L2 cools due to the lack of available data reuse
in that level (since each item is accessed at one time during
each sweep). However, because fewer and fewer elements
are needed in each subsequent sweeps, eventually all of the
required data populates the L2—and then L1—cache, and no
further evictions take place. This is illustrated by the sustained
flurry of activity between L1 and L2, and then later solely in
L1, indicated by frequent, localized streak lines and an increase
in the observed cache temperatures. The visualization clearly
shows the increasing spatial locality inherent in the access
patterns associated to bubble sort.

Although bubble sort is famously slow in algorithmic
complexity, it does in fact have—at least during certain
segments of its execution—desirable cache behavior. Our
conclusion from this initial example: though reasoning care-
fully about bubble sort would lead to the insights about its
execution presented here, our visualization makes the insights
immediately graspable—its value lies in its ability to quickly,
decisively, and visually convey those insights, which can then
later be confirmed by reasoning about the program.

Merge Sort. Merge sort typifies the “efficient” sorting
algorithms—it achieves the O(n log n) lower complexity bound
on comparison-based sorting algorithms. It is a divide-and-
conquer algorithm that works by dividing the list into two
parts, applying the merge sort procedure recursively to each
half, and then reassembling a sorted list by sweeping each list,
transferring the appropriate value to the result array.

Though the algorithm has good asymptotic complexity, it
may be somewhat surprising to see that its cache behavior is

somewhat erratic. In the initial phase of the algorithm, the input
is recursively subdivided into a tree of lists of single elements
(each of which is trivially already sorted, by definition). In this
phase, no memory transactions are performed on the elements,
so its cache performance is vacuously neutral. The second
half of the merge sort algorithm builds the sorted output by
anti-recursively merging the single-element lists, then the two-
element lists that result, etc. This phase starts out with good
cache performance, as the lists to be sorted are small and
fit entirely into L1 (Figure 7 top), but as sorted elements
begin to move farther and farther distances (as they jump from
their current position to the head of a progressively sorted
subarray), spatial locality degrades. This can be seen in the
spilling over of the working set into L2 (Figure 7 middle), and
then into main memory, with increasingly frequent bursts of
cache misses as the merge phase progresses (Figure 7 bottom).
At the midway point, the process begins again for the second
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Fig. 7. Left: A schematic view of how merge sort works. In the top half,
the sorting function is recursively called on each half of the input. This step
simply sets up a tree of computation that will accomplish the sorting, without
any memory access. In the lower half, atomic lists of a single element are
combined anti-recursively by merging, resulting in progressively larger, sorted
sublists. This stage involves comparisons and movement of elements to a
temporary working store, before they are copied back to the input array. Each
depicted merging phase matches with a snapshot of our visualization on the
right. Right: Visualization of the memory behavior of the merge phase. This
has roughly the opposite cache behavior as bubble sort—it begins its memory
transactions with small lists that fit entirely in the cache, forming progressively
larger lists that eventually overspill the cache levels, leading to poorer cache
characteristics near the end of the algorithm.



Fig. 8. The material point method (MPM), a particle-based mechanical
engineering simulation, in action. Left: Computation of momentum from the
mass and velocity data (in the black and green arrays). The algorithm tends
to sweep through the values in order, resulting in good cache performance.
Middle: Computation of the particle stress update (brown data array) near
the end of the timestep, from various data, including the constitutive model
(blue data array). MPM is made up of several phases which tend to access
the data in order. The resulting visual pattern is that of data moving into L1,
being operated upon a limited number of times, and then slowly migrating
first to L2 and then back into main memory, as newer data comes into L1 to
be operated upon in turn. Right: This example uses a larger example with a
larger cache to demonstrate the scalability of our visualization system.

half of single-element lists, and the cache behavior recurs once
more.

C. Material Point Method
The material point method (MPM) [15] is a particle-based

mechanical engineering simulation method in which objects
are discretized into collections of points, which undergo loads
according to certain rules. Here we demonstrate a running
MPM code and highlight some of its cache behaviors. We
present it here as an example of a real-world code running in
our visualization system.

Figure 8 shows an MPM timestep at various points. Figure 8
left shows an early phase of the timestep, in which the particle
momenta (computed from their masses and velocities—the
black and purple data arrays, respectively) are interpolated to
a background mesh via their positions (the green data array).

In Figure 8 middle, we see the particle stress update (the
brown data array) taking place, with input from the physical
constitutive model (blue data array), using a sweeping access
pattern that will engage each particle in the system. As this
action continues, the data seen to reside in L2, which is no
longer needed during this phase of the timestep, will slowly age
and be pushed out by the newer incoming data—the hallmark
of a “streaming” style of access, which is embodied by the
stress update.

This example contains more data than our previous examples,
and we have also quadrupled the size of the simulated cache.
As Figure 8 right shows, our system is able to scale up to larger
sizes. Currently, our bottleneck lies on the data collection side,
rather than the visualization side.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a visualization system for memory
reference traces, drawing inspiration from organic visualization
approaches, in reaching for the goal of illustrating the large-
scale behavior of memory access and caching during the run of
a program. Our system includes cache simulation as a way to
drive performance analysis, and uses a carefully orchestrated
set of visual qualities to convey important information about a
program’s runtime memory behavior.

We have several ideas in mind for future work. Although
we have argued that our design decisions work well to convey

information, there is still possible explorations of the visual
channels we have discussed. For instance, the low-frequency
motion chanel is largely unused in our current approach—
mainly because we believe the visualization is more effective
this way—but it may be the case that other effects in various
visual channels are in fact useful. We would like to prototype
several such effects, design a user study, and investigate how
useful uninitiated subjects find them.

There is also no reason to restrict these techniques to just the
memory subsystem. A crucial part of the current effort rested
in designing a meaningful static structure against which to
overlay the dynamically changing data glyphs. We believe that
such designs are possible for many different kinds of system
architectures, and that with the right kinds of data sources,
we could adapt this approach to diverse computing platforms.
The generally accepted difficulty of high-performance software
enterprises invites approaches such as ours to help developers
understand the performance characteristics of their programs.
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