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Abstract

This paper derives expressions for the arc length and the bending energy of quadratic
Bézier curves. The formulae are in terms of the control point coordinates. For fixed
start and end points of the Bézier curve, the locus of the middle control point is
analyzed for curves of fixed arc length or bending energy. In the case of arc length
this locus is convex. For bending energy it is not. Given a line or a circle and fixed
end points, the locus of the middle control point is determined for those curves that
are tangent to a given line or circle. For line tangency, this locus is a parallel line.
In the case of the circle, the locus can be classified into one of six major types. In
some of these cases, the locus contains circular arcs. These results are then used to
implement fast algorithms that construct quadratic Bézier curves tangent to a given
line or circle, with given end points, that minimize bending energy or arc length.

Key words: quadratic Bézier curve; geometric constraint solving; arc length;
bending energy; minimum arc length; minimum bending energy; optimization;
GPU implementation; circle transition.

1 Introduction

We consider the following set of problems:

Given end points b0 and b2 of a quadratic Bézier curve q(t), and a line or
circle to which the curve should be tangent. Find a curve that has minimum
arc length or minimum bending energy.
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Our study is a continuation of work that seeks to use free-form curves in
geometric constraint problems [1]. Curves that minimize bending energy or
have minimum arc length are sometimes considered to be fair in CAGD
[4,5,11,20,22,32]. Finding such curves subject to geometric constraints offers
the ability to find curves that are to have prescribed clearance from points,
circles or straight-line borders, and so has applications in mechanical CAD[6]
as well as in motion planning. For instance, Moll and Kavraki [23] consider
motion planning for elastic objects. Roughly speaking, a flexible rectangular
object is moved past a set of obstacles and is flexing along the path as re-
quired for the passage. They determine the required flexing numerically using
a bending energy functional.

We address the problem of finding minimum length or minimum energy curves
with tangency constraints by deriving, for these curves, analytical expressions
for arc length and bending energy. We then solve the constraint problem by
utilizing the high parallelism of the GPU. The tangency constraints are solved
using a locus method. For example, given the points b0 and b2 and the tan-
gent line T , the locus of the middle control point b1 of all quadratic Bézier
curves tangent to T is a parallel to T at a distance easily determined from
the distances of b0 and b2 from T . We also prove that the solution of the
minimum length tangency problem is unique.

Prior work on finding Bézier curves with minimum arc length as constraint
includes the following: [21] gives an analytic formula for the arc length of
quadratic Bézier curves. This is a well-known result. Cubic Bézier curves, on
the other hand, do not have a closed form analytic arc length expression in
general, and require approximation [12,13]. However, finding cubic Hermite
interpolants subject to minimum arc length has been done using iteration;
e.g., [7].

Prior work on minimum energy curves includes [9] who develops analytic for-
mulae for the bending energy of Pythagorean Hodograph curves of degree 3
and 5. [19] devises tools to find minimum energy splines under prescribed end
tangency conditions. The curves are approximated from first principles and
are not Bézier curves. [8] considers the Hermite interpolation problem with
minimal energy curves. The curves are integrated from piecewise polynomial
curvature functions. We are not aware of a prior, closed-form expression for
bending energy of quadratic Bézier curves; however, the derivation of such a
formula is elementary and is sketched for completeness.

We also consider the Circle Transition Problem that asks to connect tangen-
tially two given circles with a Bézier curve. Several variants of this problem
have been studied, including connecting the circles with composite cubic spiral
Bézier curves[15,27]; with PH quintic spiral curves[14,17,28,30]; with fair or
single cubic curves[16,29]; and with Bézier-like cubic functions[31]. We solve
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the circle transition problem using quadratic Bézier curve, or equivalently
parabolic arc, which minimizes the linear combination of length and bending
energy. This result has a merit. The parabolic arc has rational offset of degree
six[2,3,10], so its offset can be obtained instantaneously in the form of rational
Bézier curve.

In the remainder of this paper, we introduce notation and preliminaries in Sec-
tion 2. Section 3 analyzes the locus of the middle control point of a quadratic
Bézier curve when prescribing a fixed arc length. It is a convex curve. Sec-
tion 3 also studies the expression for the bending energy. Here, the region
for the middle control point, when prescribing a particular bending energy,
is not convex, thus the corresponding constraint problem may have multiple
solutions.

Section 4 solves the design problem when introducing tangency constraints,
to a circle or a line. It also gives performance results when implementing
the computations on the GPU in Section 5. Because of the preceding locus
analysis, the algorithms for solving these constraint problems are very simple.
Section 6 discusses the circle transition problem for quadratic Bézier curves
optimizing length and energy.

2 Definitions and Preliminaries

We consider quadratic Bézier curves q(t) =
∑2

i=0 biB
2
i (t) where the bi are

control points and Bn
i (t) are the familiar Bernstein-Bézier basis functions of

degree n. We are interested in the arc length of those curves, given by the
integral

L(q) =
∫ 1

0

√
q′(t) · q′(t)dt (1)

where q′(t) is the derivative of q(t) and · denotes the inner product. The
integral has a closed form solution; see, e.g., [21]. Likewise, we consider those
curves that have a given bending energy, given by

E(q) =
1

2

∫

q
κ(s)2ds (2)

where κ(s) is the curvature at s. We will express some relations in terms of a
quantity Λα, defined as

Λα = α|∆b0|2 + (1− α)|∆b1|2 −
1

4
|∆b2|2

where ∆bi denotes the vector bi+1−bi, for i = 0, 1, and ∆b2 = b0−b2. Also,
| · | denotes the length of a vector.
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Throughout, we are interested in the locus of the middle control point b1.
When considering tangency to a line, the tangency locus is a curve on which the
middle control point must lie for the curve to realize the prescribed tangency, a
line parallel to the tangent. For a circle, the tangency locus is more complicated
and is analyzed in Section 4. For a fixed arc length and fixed end points b0

and b2, the possible positions of b1 comprise an arc length locus. Likewise,
for fixed energy we have an energy locus. We will solve the problems stated
in the introduction by intersecting these loci using a highly parallel GPU
implementation.

3 Length and Energy of Quadratic Bézier Curves

We give analytic expressions for arc length and bending energy of quadratic
Bézier curves. Arc length is stated in terms of the length of the sides and
the area of the triangle △b0b1b2. We also prove that the level sets of the arc
length, for fixed curve end points, are convex. That is, fixing the end points b0

and b2, the locus of b1 for quadratic Bézier curves of fixed length is a convex
curve. We then give a bending energy formula. Here, the level sets for given
bending energy are no longer convex.

3.1 Arc Length

Let q(t), t ∈ [0, 1] be a quadratic Bézier curve with control points b0, b1 and
b2. For such Bézier curves the arc length, defined by Equation (1), can be
expressed as

L(q)=
Λ1/4|∆b1|+ Λ3/4|∆b0|

2Λ1/2

(3)

+
|∆b0 ×∆b1|2

8(Λ1/2)3/2

{
ln(Λ1/4 + |∆b1|

√
Λ1/2)− ln(−Λ3/4 + |∆b0|

√
Λ1/2)

}
.

See also [7].

When both end points b0 and b2 are given, we can determine the orbits of
the control point b1 = [x1, y1] for which the Bézier curves have the same arc
length. Figure 1 shows four orbits of b1s, for arc lengths 2.05, 2.5, 3, and 3.5,
with b0 = [−1, 0] and b2 = [1, 0]. We prove that the orbits are the boundary
of convex sets.

Lemma 3.1 For fixed b0 and b2, the set SL = {b1 : L(q) ≤ L} is convex.
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Fig. 1. Orbits of the middle control points b1 for curves with the same arc length
2.05(red), 2.5(magenta), 3(green), 3.5(blue), respectively, when b0 = [−1, 0] and
b2 = [1, 0].

Proof. Let [k1, h1], [k2, h2] ∈ SL be two points in SL. We will show that the
convex combination [k3, h3] = λ[k1, h1]+ (1−λ)[k2, h2], with λ ∈ (0, 1), is also
in SL.

For j = 1, 2, 3, let qj(t) be the quadratic Bézier curve having the control points
b0,b

j
1 = [kj , hj],b2, respectively, and let bj

0 = b0 and bj
2 = b2. Then

q3(t) =
2∑

i=0

B2
i (t)b

3
i =

2∑

i=0

B2
i (t)[λb1

i + (1− λ)b2
i ] = λq1(t) + (1− λ)q2(t)

For any partition {t0 = 0, t1, · · · , tn−1, tn = 1}, by the triangle inequality

|q3(tk+1)− q3(tk)| ≤ λ|q1(tk+1)− q1(tk)|+ (1− λ)|q2(tk+1)− q2(tk)|.

Thus

L(q3) = sup
n∑

k=1

|q3(tk+1)− q3(tk)| ≤ λL(q1) + (1− λ)L(q2)

where the sup is for all partitions of the whole interval [0, 1]. Since L(q1) and
L(q2) is less than or equal to L, so is L(q3). Thus the set {[k, h] : b1 =
[k, h],L(q) ≤ L} is convex. 2

By the above lemma, it follows that the boundary {b1 : L(q) = L} is a convex
curve.
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Fig. 2. Level curves of the energy function E(q) = E of the quadratic Bézier curve
q(t) with respect to the middle control point b1, where E = 0.1(red), 1(magenta),
2(green), or 3(blue), for fixed end points b0 = [−1, 0] and b2 = [1, 0].

3.2 Bending Energy

We consider now the bending energy of the Bézier curve q(t) defined by Equa-
tion (2). By algebra and using integral formulae, the bending energy can be
expressed as

E(q) =
2

3|∆b0 ×∆b1|2
(A + B) (4)

where

A =
Λ1/4(3Λ1/2|∆b1|2 − Λ2

1/4)

|∆b1|3
and B =

Λ3/4(3Λ1/2|∆b0|2 − Λ2
3/4)

|∆b0|3
.

For fixed b0 and b2, we can determine the locus of the control point b1 =
[x1, y1] for which the Bézier curves have the same energy. Figure 2 shows four
contours, for energy 0.1, 1, 2, and 3, when b0 = [−1, 0] and b2 = [1, 0].

We explore the level curves near the singularities. By symmetry, it suffices to
explore the curves near the control point b0. In the following, we assume that
b0 = [−1, 0] and b2 = [1, 0]. Let r be the distance |∆b0| and let θ be the angle
between the x-axis and the vector ∆b0, in the positive orientation. Observing
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Fig. 3. Energy level curves near the singularity at b0 for E=1(red) to E=4(blue).

that |∆b2| = 2, we estimate E(q) for r ≪ 1 (cf. Equation (4)). We have

2
3|∆b0 ×∆b1|2

= 1
6r2 sin2 θ

Λ1/4 ≈ 2− 3r cos θ

Λ1/2 ≈ 1− 2r cos θ

Λ3/4 ≈ −r cos θ

A ≈ 2− 6r cos θ

B ≈ cos3 θ − 3 cos θ

so that, neglecting the O(r) term of the approximation of A, we obtain for
sufficiently small r:

E(q) ≈ (cos θ + 2) tan2(θ/2)

6r2 (5)

The estimate implies that the level curves of equal energy reach the singu-
larities at b0 and b2 tangent to the x-axis. Moreover, fixing θ < 2π and for
small r, the energy E(q) is proportional to 1/r2. Figure 3 shows several level
curves near the singularity at b0. As the energy threshold is increased, the
level curves curl more tightly near the singularity. It follows that the curves
E(q) = E are properly nested.

4 Tangency Locus

We fix the start and end points of the quadratic Bézier curve and construct
the locus of the control point b1 of all curves that are tangent to a given
geometric element T . This tangency locus is simple when T is a line, but it is
considerably more complex when T is a circle.
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x 0x2

c

z0 z2

Fig. 4. Quadratic Bézier control points and tangency to line T .

4.1 Tangency to a Line

The tangency locus to a given line is particularly simple:

Proposition 4.1 Given a line T and two points b0 and b2 on the same side
of T , let q(t) be a quadratic Bézier curve with control points bk, k = 0, 1, 2.
Then the following holds (Figure 4).

(a) q(t) is tangent to T iff b1 is on the line T ′ parallel to T at a distance
that is the geometric mean of the distances of b0 and b2 to T , and on the
opposite side of b0 and b2. That is, b2 = ac.

(b) With c the point of tangency on T , b1 is the midpoint of the intersections
x0 and x2 of T ′ with the lines through c and b0 and b2, respectively.

(c) Let z0 and z2 be the orthogonal projections of b0 and b2 onto T . If the
normal N through c contains the point b1, then N and T bisect the angles
between the lines b0c and b2c. Moreover, c divides the line segment z0z2

in the ratio a : c.

Proof. Let yi, i = 0, 2, be the intersection point of the lines T and b1bi.
By the de Casteljau algorithm, the line T is tangent to the Bézier curve iff
|b0−y0| : |y0−b1| = |b1−y2| : |y2−b2|. With a, b and c the distances of the
control points from T as shown in Figure 4, we have |b0−y0| : a = |y0−b1| : b
and |b1 − y2| : b = |y2 − b2| : c, and therefore b2 = ac. Part (a) follows.

For Part (b), if b1 be the midpoint of x0 and x2, then

|y0 − c|
|b1 − x0|

=
a

a + b
,

|x2 − b1|
|c− y2|

=
b + c

c
.

Since ac = b2, the ratio |y0 − c| : |c − y2| is equal to a : b, thus c is on q(t)
with tangent T . The converse is argued analogously.
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If the normal N through C contains b1, then the triangle △x0x2c is isosceles,
so T and N bisect the angles. Therefore, the triangles △b0z0c and △b2z2c
are similar. This establishes Part (c). 2

Given b0,b2, c and T , the missing control point b1 can be constructed using
Part (b) of Proposition 4.1. If the control point is to lie on the normal through
c, then c can be found using Part (c).

4.2 Tangency to a Circle

Let a circle be given by [x(θ), y(θ)] = [Ox + r cos θ, Oy + r sin θ], where O =
[Ox, Oy] is the center and r is the radius of the circle, and b0 = [x0, y0] and
b2 = [x2, y2] are the end points of the quadratic Bézier curve; Figure 5(a).

Let θj , j = 1, · · · , 4 be the signed angles of the four tangent points on the circle
of the lines(skyblue and orange) passing b0 and b2, as shown in Figure 5(a). By
Proposition 4.1, the quadratic Bézier curve is tangent to the circle at the point
c(θ) = [x(θ), y(θ)] if and only if the middle control point b1(θ) = [x1(θ), y1(θ)]
satisfies

[x1(θ), y1(θ)] =

[x(θ), y(θ)] + 1
2

(√
d2

d0
[x(θ)− x0, y(θ)− y0] +

√
d0

d2
[x(θ)− x2, y(θ)− y2]

) (6)

θ1 < θ < θ2 or θ3 < θ < θ4, where di is the distance from bi to the common
tangent(green line) of circle and Bézier curve,

di =
1

r
|(x− xi)(x− Ox) + (y − yi)(y − Oy)| =

|(c− bi) · (c−O)|
r

.

Let σ = (c−b0) · (c−O)/|(c−b0) · (c−O)|. It is obvious that σ = (c−b2) ·
(c−O)/|(c− b2) · (c−O)|, since the two points b0 and b2 are on the same
side of the common tangent. If b0 and O lie on the same side of the common
tangent, then σ = 1 and if they are on the opposite side, then σ = −1. Thus
we obtain

di =
σ

r
{(c− bi) · (c−O)}. (7)

Proposition 4.2 The tangent of the tangency locus at [x1(θ), y1(θ)] is par-
allel to the tangent of the circle at [x(θ), y(θ)], for each θ ∈ (θ0, θ1) ∪ (θ3, θ4).
Furthermore they have the same tangent direction if the line segment b0b2 and
the center O lie on opposite sides of the common tangent of circle and Bézier
curve.

Proof. The derivative of [x1(θ), y1(θ)] in Equation (6) is
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(a) (b)

(c) (d)

Fig. 5. (a) The quadratic Bézier curve with end points b0 and b2 has the contact
point c(θ) on the circle, θ1 < θ < θ2 (closer arc, blue) and θ3 < θ < θ4 (farther
arc, red). (b) On the closer branch, the center O and the line segment b0b2 are on
opposite sides of the common tangent(green line). (c) c′(θ) and b′1(θ) are parallel
and have the same direction for the closer branch of the tangency locus(blue curve).
(d) The tangency locus of b1 consists of two branches, closer branch(blue curve)
and farther branch(red curve).

[x′1(θ), y
′
1(θ)] = [x′(θ), y′(θ)]


1 +

1

2




√
d2

d0
+

√
d0

d2





 (8)

+
1

2

d0d
′
2 − d′0d2

d
3/2
0 d

3/2
2

{d2(c(θ)− b0)− d0(c(θ)− b2)}.

From Equation (7) we get

d2(c(θ)−b0)−d0(c(θ)−b2) =
σ

r
((c−b0)× (c−b2))[y−Oy,−(x−Ox)] (9)
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Since the vector [y −Oy,−(x− Ox)] is parallel to [x′(θ), y′(θ)], we have

[x′1(θ), y
′
1(θ)] ‖ [x′(θ), y′(θ)].

If the line segment b0b2 and the center O lie on opposite sides of the common
tangent, then σ = −1 and Equation (9) yields

d2(c(θ)− b0)− d0(c(θ)− b2) =
1

r
((c− b0)× (c− b2))c

′(θ), (10)

which is the same direction as [x′(θ), y′(θ)]. Since c′(θ) · (c(θ) − O) = 0, we
have di

′(θ) = −1
r

c′(θ) · (c− bi) for i = 0, 2, and

d0d
′
2−d′0d2 =

1

r2
((c−b0)·(c−O)) (c′·(c−b2))−

1

r2
((c−b2)·(c−O)) (c′·(c−b0)).

Let αi be the angle between the two vectors c′ and bi − c, for i = 0, 2, as
shown in Figure 5(b). Then

d0d
′
2−d′0d2 =

1

r2
|c−b0||c−O||c′||c−b2|(− cos(

π

2
+α0) cos α2+cos(

π

2
+α2) cos α).

Since 0 < α2 < α0 < π, we have

d0d
′
2 − d′0d2 =

1

r2
|c− b0||c−O||c′||c− b2| · sin(α0 − α2) > 0. (11)

By Equations (8)-(11), [x1(θ), y1(θ)] has the same tangent direction to [x(θ), y(θ)].
2

Remark 4.3 (a) As shown in Figure 5, the contact points c of the circle
and the quadratic Bézier curve lie on two arcs, a closer arc(blue curve) and
a farther arc(red curve), from the line segment b0b2. Likewise, the middle
control points b1 form two branches of the tangency locus.

(b) By Proposition 4.2, the Gauss maps of the tangency locus and of the contact
point arcs are equal by components: 1

N ({c(θ) : θ1 < θ < θ2})=N ({b1(θ) : θ1 < θ < θ2})
N ({c(θ) : θ3 < θ < θ4})=N ({b1(θ) : θ3 < θ < θ4}).

Even if the curve [x(θ), y(θ)] is not a circle, the above two equations are true
whenever the curve is C1-continuous.

(c) By Equations (6) and (7), the tangency locus of b1 has the four assymptotic
lines(skyblue and orange).

1 For more about the Gauss map, see [18,25,26].
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Corollary 4.4 The closer branch of tangency locus of b1 is nonsingular.

Proof. By Proposition 4.2, b′
1(θ) is parallel and has the same direction to

c′(θ), i.e., b′
1(θ) = k · c′(θ) for some positive real number k > 0. Since c′(θ)

is a nonzero vector for all θ ∈ (θ1, θ2), so is b′
1(θ), and the closer branch(blue

curve) of tangency locus of b1 is nonsingular, as illustrated in Figure 5. 2

Proposition 4.5 If any point on the line segment b0b2 is neither inside
nor on the circle C, then the minimum length quadratic Bézier curve has the
middle control point b1 on the closer branch {b1(θ) : θ1 < θ < θ2}, not on the
farther branch {b1(θ) : θ3 < θ < θ4}.

Proof. If any point on the line segment b0b2 is neither inside nor on the
circle C, then the closer branch {b1(θ) : θ1 < θ < θ2} is not empty. By the
definition of b1 in Equation (6), the closer branch and the farther branch
each are connected sets in the plane. By Remark 4.3(c), the closer branch has
two asymptotic lines, so it separates the plane into two regions. One region
contains the line segment b0b2, and the other region contains the far branch.

Assume that the minimum length is attained at bf
1 on the far branch. Let

m be the midpoint of b0 and b2. The line segment bf
1m intersects the closer

branch, say, bc
1. By convexity, Lemma 3.1, there exists some λ ∈ (0, 1) such

that
L(bc

1) = λL(bf
1) + (1− λ)L(m) < L(bf

1)

which is a contradiction. Hence the minimum length is obtained on the closer
branch {b1(θ) : θ1 < θ < θ2} and not on the far branch {b1(θ) : θ3 < θ < θ4}.
2

We have a number of special cases, when the line segment b0b2 intersects the
circle C or lies inside C. These can be classified into six different cases, as
shown in Figure 6.

Proposition 4.6 The tangency locus of b1 has the following properties.

(a) The tangency locus of b1 is bounded if and only if both end-points b0 and
b2 lie inside the circle.

(b) If one end-point is on C and the other is inside C, then the tangency locus
of b1 consists of one straight line and a bounded curve.

(c) If two control points b0 and b2 lie on the circle, then the tangency locus
consists of two straight lines and two circular arcs that are centered at the
points O± r

|m−O|(m−O), on the circle perimeter, with the radius r∓|m−O|.

Proof. (a) Assume that at least one of the two points b0 and b1 lies outside
the circle C, say b0. Let c(θ1) be the tangent point from b0 to the circle, and

12



(a) (b) (c)

(d) (e) (f)

Fig. 6. Tangency locus for a circle. There are six special cases. (a) both end points
b0 and b2 lie outside the (gray) circle C, (b) one end point is outside and the other
is inside, (c) one is outside and the other lies on C, (d) both are inside C, (e) one is
on C and the other is inside, or (f) both lie on the circle C. The green line connects
b0 and b2. In cases (c), (e) and (f) the tangency locus includes, as a component,
the circle tangent of an end point on the perimeter.

{b1(θ) : θ ∈ (θ1, θ2)} a part of the tangency locus of b1. As θ approaches θ1

from the right, d0(θ) converges to zero, and d2(θ) and c(θ) − b0 converge to
nonzero limits, so |b1(θ)| diverges to ∞ by Equation (6). Thus the tangency
locus is unbounded and the line b0c(θ1) is an asymptote, as shown in Figures
5 and 6(a)-(c).

Let at least one of two end-points lie on the circle C, say b0. Let ℓ0 be the
circle tangent at b0. If b1 lies on the line ℓ0, then the quadratic Bézier curve q
having the control points bi, i = 0, 1, 2 is tangent to the circle C at q(0) = b0.
Thus the straight line ℓ0 is a part of the tangency locus of b1 and so the
tangency locus is unbounded, as shown in Figure 6(c), (e) and (f).

Let both end-points be inside C. Then {b1(θ) : θ ∈ [0, 2π]} is the tangency
locus of b1. Since for i = 0, 2, di(θ) is non-zero continuous and c(θ) − bi is
continuous, so is b1(θ) by Equation (6). Thus the tangency locus is a compact
set in the plane, which means that it is closed and bounded[24], as shown in
Figure 6(d).
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(b) Let one of b1 or b2 lie on C and the other inside C. Without loss of
generality, we may assume that b0 is on C and b2 inside C. Let ℓ0 be the
tangent line of the circle at the point b0. For some θ0 ∈ [0, 2π), b0 = c(θ0),
and the tangency locus of b1 consists of {b1(θ) : θ ∈ (θ0, θ0 + 2π)} and ℓ0.
Since d0(θ) = |c− b0|2/2r, both limits

lim
θ→θ±0

√√√√d2(θ)

d0(θ)
(c− b0) =

√
2rd2(θ0) · (±T0)

exist, where T0 is the unit tangent vector of c(θ) at θ = θ0. Thus b1(θ) can
be extended continuously at both end points θ = θ0 and θ0 + 2π, which is
the compactification[24]. Hence the extended set {b1(θ) : θ ∈ [θ0, θ0 + 2π]} is
compact, and so the tangency locus consists ℓ0 and a bounded curve, as shown
in Figure 6(e).

(c) Let both end points b0 and b2 lie on the circle. For i = 0, 2, let ℓi be the
tangent line of the circle at the point bi. For some θ0 and θ2 with θ0 < θ2 <
θ0 + 2π, c(θ0) = b0 and c(θ2) = b2. The tangency locus of b1 consists ℓ0, ℓ2

and {b1(θ) : θ ∈ (θ0, θ2), (θ2, θ0 + 2π)}. For θ ∈ (θ0, θ2), di(θ) = |c− bi|2/2r,
i = 0, 2 and

|c− b0| = 2r sin
θ − θ0

2
, |c− b2| = 2r sin

θ2 − θ

2
.

Thus by Equation (6) and trigonometry, we have

b1(θ) = r(1− cos
θ2 − θ0

2
)[cos θ, sin θ] + [Ox + r cos

θ0 + θ2

2
, Oy + r sin

θ0 + θ2

2
].

Analogously, for θ ∈ (θ2, θ0 + 2π),

b1(θ) = r(1 + cos
θ2 − θ0

2
)[cos θ, sin θ] + [Ox− r cos

θ0 + θ2

2
, Oy− r sin

θ0 + θ2

2
].

Hence the tangency locus consists of two strait lines and two circular arcs
centered at O ± r

|m−O| (m − O) with the radius r ∓ |m − O|, as shown in

Figure 6(f). 2

5 Implementation and Results

We have implemented the construction of quadratic Bézier curves subject to
tangency and length or energy minimization constraints. The basic algorithm
amounts to sampling candidate contact points, along the stipulated tangent or
tangency circle, and evaluate the resulting arc length or bending energy. This
very fast computation uncovers local minima that can be refined iteratively or
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by oversampling subregions. The sampling can be implemented in the GPU.
However, because of the simplicity of the task and the simplicity of the domain,
we elected to keep this computation in the CPU. Our implementation includes
the option of computing the b1 tangency locus, analyzed before, as well as the
b1 locus of the energy and arc length level sets. The latter curves are computed
in the GPU using continuation.

By Propositions 4.1, the b1 tangency locus is a parallel to the tangent line.
By Lemma 3.1, moreover, the minimum-length solution is unique. We noticed
empirically that the minimum length solution is achieved near a tangency
at which the curve normal contains the b1 control point. This is a suitable
starting point for iteratively determining the solution. For tangency to a circle
we cannot expect a unique minimum solution. For instance, when the end
points lie symmetrically with respect to the circle center there will be two
global arc length minima.

We measured the program performance on a desktop PC outfitted with a desk-
top PC running Windows Vista (32bit) with the following configuration: Intel
Xeon X5460 CPU at 3.16GHz, 4GB main memory, and an nVidia GeForce
GTX 285 graphics card driving a display with 2560x1600 pixels. The program
was run in release mode alongside other applications. Performance is impacted
by whether level set loci are computed, and so we measured performance with
and without this computation. All performance numbers are in frames per sec-
ond (fps) and are obtained by moving the start or endpoint with the mouse.
Thus, 500 fps means that the computation to update the display takes only 2
msec.

no level sets level sets

Minimum length line tangent 2000 340

Minimum length circle tangent 1400 300

Minimum energy line tangent 2000 300

Minimum energy circle tangent 1290 275

Figure 7 shows a representative screen shot.

6 The Circle Transition Problem

We now consider the Circle Transition Problem that asks to connect tangen-
tially two given circles with a Bézier curve. In this section, we deal with the
following variant of the circle transition problem:
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Fig. 7. Left: minimum length quadratic Bézier curve (black) tangent to a circle;
length locus red, tangency locus brown. Right: minimum energy quadratic Bézier
curve (black) tangent to a circle; energy locus red, tangency locus brown.

Fig. 8. The quadratic circle-transitions which are tangent to two given circles(blue)
and minimize µL(q) + (1 − µ)E(q) for µ = 1(green), µ = 1/10(magenta), and
µ = 1/30(khaki), and their control polygons(dash-lines).

For real numbers 0 < µ < 1, find a parabolic arc tangent to two circles that
minimizes the convex combination of length and bending energy as

min (µL(q) + (1− µ)E(q)) (12)

Using the formulae (3) and (4), we obtain the parabolic arc which is a circle
transition of two given circles and satisfies Equation (12). Figure 8 shows
examples for µ = 1, 1/10 and 1/30. The offset curves of the parabolic arcs and
circles can then be obtained directly as rational Bézier curves. Figure 9 shows
the offset curves of the circle transitions shown in Figure 8.
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Fig. 9. Offset curve(magenta) of two circles and quadratic circle-transition(blue) for
µ = 1/10.
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